1
|
Noches V, Campos-Melo D, Droppelmann CA, Strong MJ. Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1417961. [PMID: 39290830 PMCID: PMC11405384 DOI: 10.3389/fnmol.2024.1417961] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
The progressive degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) is accompanied by the formation of a broad array of cytoplasmic and nuclear neuronal inclusions (protein aggregates) largely containing RNA-binding proteins such as TAR DNA-binding protein 43 (TDP-43) or fused in sarcoma/translocated in liposarcoma (FUS/TLS). This process is driven by a liquid-to-solid phase separation generally from proteins in membrane-less organelles giving rise to pathological biomolecular condensates. The formation of these protein aggregates suggests a fundamental alteration in the mRNA expression or the levels of the proteins involved. Considering the role of the epigenome in gene expression, alterations in DNA methylation, histone modifications, chromatin remodeling, non-coding RNAs, and RNA modifications become highly relevant to understanding how this pathological process takes effect. In this review, we explore the evidence that links epigenetic mechanisms with the formation of protein aggregates in ALS. We propose that a greater understanding of the role of the epigenome and how this inter-relates with the formation of pathological LLPS in ALS will provide an attractive therapeutic target.
Collapse
Affiliation(s)
- Veronica Noches
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
2
|
Xu R, Njumbe Ediage E, Verhaeghe T, Snoeys J, Dillen L. Therapeutic siRNA Loaded to RISC as Single and Double Strands Requires an Appropriate Quantitative Assay for RISC PK Assessment. Nucleic Acid Ther 2024; 34:199-210. [PMID: 38638105 DOI: 10.1089/nat.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
In recent years, therapeutic siRNA projects are booming in the biotech and pharmaceutical industries. As these drugs act by silencing the target gene expression, a critical step is the binding of antisense strands of siRNA to RNA-induced silencing complex (RISC) and then degrading their target mRNA. However, data that we recently obtained suggest that double-stranded siRNA can also load to RISC. This brings a new understanding of the mechanism of RISC loading which may have a potential impact on how quantification of RISC loaded siRNA should be performed. By combining RNA immune precipitation and probe-based hybridization LC-fluorescence approach, we have developed a novel assay that can accurately quantify the RISC-bound antisense strand, irrespective of which form (double-stranded or single-stranded) is loaded on RISC. In addition, this novel assay can discriminate between the 5'-phosphorylated antisense (5'p-AS) and the nonphosphorylated forms, therefore specifically quantifying the RISC bound 5'p-AS. In comparison, stem-loop qPCR assay does not provide discrimination and accurate quantification when the oligonucleotide analyte exists as a mixture of double and single-stranded forms. Taking together, RISC loading assay with probe-hybridization LC-fluorescence technique would be a more accurate and specific quantitative approach for RISC-associated pharmacokinetic assessment.
Collapse
Affiliation(s)
- Rui Xu
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Emmanuel Njumbe Ediage
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Tom Verhaeghe
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Jan Snoeys
- Translational Pharmacokinetics/ Pharmacodynamics & Investigative Toxicology (TPPIT), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Lieve Dillen
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| |
Collapse
|
3
|
Systematic review and meta-analysis on microRNAs in amyotrophic lateral sclerosis. Brain Res Bull 2023; 194:82-89. [PMID: 36681253 DOI: 10.1016/j.brainresbull.2023.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
MicroRNAs (miRNAs) exhibit a crucial role in the pathogenesis and progress of neurodegenerative disorders. Recent studies have shown abnormal levels of miRNA expression in patients with amyotrophic lateral sclerosis (ALS). Clinical data also confirmed that miRNAs in these patients are inconsistent across studies. A comprehensive systematic review and meta-analysis of current studies can help recognize the important roles of miRNAs during ALS development. Therefore, we initially aimed to perform a systematic literature review on the muscle or serum miRNAs in patients with ALS and healthy individuals. Subsequently, we quantitatively summarized the clinical data of muscle or serum miRNA of patients with ALS and healthy individuals using a meta-analytical technique. 11 studies comprising 281 patients with ALS and 244 healthy control (HC) controls were identified from PubMed and Web of Science for meta-analysis. A systematic review revealed that miRNA levels are closely associated with the occurrence of ALS disease. The expression levels of the most relevant miRNAs were either increased or decreased. The random-effects meta-analysis indicated that the levels of miR-206, miR-133b, and miR-338-3p were significantly elevated in patients with ALS than in HC subjects. By contrast, there was no significant differences in the miR-133a levels between patients with ALS and HC subjects. Collectively, our outcomes demonstrated that serum miR-206, miR-133b, and miR-338-3p were significantly increased in patients with ALS. We speculated that the increased expression levels of miR-206, miR-133b and miR-338-3p are potential promising biomarkers for ALS.
Collapse
|
4
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
5
|
Koike Y, Onodera O. Implications of miRNAs dysregulation in amyotrophic lateral sclerosis: Challenging for clinical applications. Front Neurosci 2023; 17:1131758. [PMID: 36895420 PMCID: PMC9989161 DOI: 10.3389/fnins.2023.1131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.
Collapse
Affiliation(s)
- Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Lépine S, Castellanos-Montiel MJ, Durcan TM. TDP-43 dysregulation and neuromuscular junction disruption in amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:56. [PMID: 36575535 PMCID: PMC9793560 DOI: 10.1186/s40035-022-00331-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signature feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuromuscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and glial cells that may contribute to NMJ disruption in ALS.
Collapse
Affiliation(s)
- Sarah Lépine
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada ,grid.14709.3b0000 0004 1936 8649Faculty of Medicine and Health Sciences, McGill University, 3605 De La Montagne, Montreal, QC H3G 2M1 Canada
| | - Maria José Castellanos-Montiel
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| | - Thomas Martin Durcan
- grid.14709.3b0000 0004 1936 8649The Neuro’s Early Drug Discovery Unit (EDDU), Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
7
|
Zhou P, Xu P, Yu W, Li H. MiR-206 improves intervertebral disk degeneration by targeting GJA1. J Orthop Surg Res 2022; 17:157. [PMID: 35279164 PMCID: PMC8917658 DOI: 10.1186/s13018-022-03044-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background A large amount of evidence suggested that miRNA was involved in the progression of intervertebral disk degeneration (IDD). The purpose of our study was to explore the function and potential mechanism of miR-206/GJA1 axis in IDD. Methods IDD nucleus pulposus (NP) cell model was established through treatment of LPS. IDD rat model was established by annulus fibrosus puncture. The expression of miR-206 and GJA1 was detected by RT-PCR, apoptosis was evaluated by flow cytometry or TUNEL, inflammatory factors were tested by ELISA, extracellular matrix related protein expression was detected by western blot, and HE and safranin-O staining were used to assess the pathological changes of IDD. Results GJA1 was found to be highly expressed in IDD tissues and LPS-induced NP cells. Down regulation of GJA1 reduced inflammatory factors, inhibited apoptosis and enhanced extracellular matrix in LPS-induced NP cells. MiR-206 was downregulated in IDD tissues and directly targeted GJA1, and the expression of miR-206 was negatively correlated with the expression of GJA1 in IDD tissues. Further, it was demonstrated that overexpression of miR-206 could attenuate LPS-induced NP cell injury by targeting GJA1. In vivo, the upregulation of miR-206 improved IDD and reduced NP cell apoptosis. Conclusion Our study showed that miR-206 reduced the level of inflammatory factors, restrained NP cell apoptosis and increases extracellular matrix by targeting GJA1. These data suggested that miR-206/GJA1 might be potential therapeutic targets for IDD.
Collapse
|
8
|
Versluys L, Ervilha Pereira P, Schuermans N, De Paepe B, De Bleecker JL, Bogaert E, Dermaut B. Expanding the TDP-43 Proteinopathy Pathway From Neurons to Muscle: Physiological and Pathophysiological Functions. Front Neurosci 2022; 16:815765. [PMID: 35185458 PMCID: PMC8851062 DOI: 10.3389/fnins.2022.815765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
TAR DNA-binding protein 43, mostly referred to as TDP-43 (encoded by the TARDBP gene) is strongly linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). From the identification of TDP-43 positive aggregates in the brains and spinal cords of ALS/FTD patients, to a genetic link between TARBDP mutations and the development of TDP-43 pathology in ALS, there is strong evidence indicating that TDP-43 plays a pivotal role in the process of neuronal degeneration. What this role is, however, remains to be determined with evidence ranging from gain of toxic properties through the formation of cytotoxic aggregates, to an inability to perform its normal functions due to nuclear depletion. To add to an already complex subject, recent studies highlight a role for TDP-43 in muscle physiology and disease. We here review the biophysical, biochemical, cellular and tissue-specific properties of TDP-43 in the context of neurodegeneration and have a look at the nascent stream of evidence that positions TDP-43 in a myogenic context. By integrating the neurogenic and myogenic pathological roles of TDP-43 we provide a more comprehensive and encompassing view of the role and mechanisms associated with TDP-43 across the various cell types of the motor system, all the way from brain to limbs.
Collapse
Affiliation(s)
- Lauren Versluys
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Pedro Ervilha Pereira
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Nika Schuermans
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan L. De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Bogaert
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bart Dermaut
- Department Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
9
|
Ma X, Ying Y, Xie H, Liu X, Wang X, Li J. The Regulatory Role of RNA Metabolism Regulator TDP-43 in Human Cancer. Front Oncol 2021; 11:755096. [PMID: 34778070 PMCID: PMC8581290 DOI: 10.3389/fonc.2021.755096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) is a member of hnRNP family and acts as both RNA and DNA binding regulator, mediating RNA metabolism and transcription regulation in various diseases. Currently, emerging evidence gradually elucidates the crucial role of TDP-43 in human cancers like it is previously widely researched in neurodegeneration diseases. A series of RNA metabolism events, including mRNA alternative splicing, transport, stability, miRNA processing, and ncRNA regulation, are all confirmed to be closely involved in various carcinogenesis and tumor progressions, which are all partially regulated and interacted by TDP-43. Herein we conducted the first overall review about TDP-43 and cancers to systematically summarize the function and precise mechanism of TDP-43 in different human cancers. We hope it would provide basic knowledge and concepts for tumor target therapy and biomarker diagnosis in the future.
Collapse
Affiliation(s)
- Xueyou Ma
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
11
|
Kinoshita C, Kubota N, Aoyama K. Interplay of RNA-Binding Proteins and microRNAs in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22105292. [PMID: 34069857 PMCID: PMC8157344 DOI: 10.3390/ijms22105292] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
The number of patients with neurodegenerative diseases (NDs) is increasing, along with the growing number of older adults. This escalation threatens to create a medical and social crisis. NDs include a large spectrum of heterogeneous and multifactorial pathologies, such as amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and multiple system atrophy, and the formation of inclusion bodies resulting from protein misfolding and aggregation is a hallmark of these disorders. The proteinaceous components of the pathological inclusions include several RNA-binding proteins (RBPs), which play important roles in splicing, stability, transcription and translation. In addition, RBPs were shown to play a critical role in regulating miRNA biogenesis and metabolism. The dysfunction of both RBPs and miRNAs is often observed in several NDs. Thus, the data about the interplay among RBPs and miRNAs and their cooperation in brain functions would be important to know for better understanding NDs and the development of effective therapeutics. In this review, we focused on the connection between miRNAs, RBPs and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan;
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-3793 (K.A.)
| |
Collapse
|
12
|
TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol 2021; 28:132-142. [PMID: 33398173 DOI: 10.1038/s41594-020-00537-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) was initially thought to be associated with oxidative stress when it was first linked to mutant superoxide dismutase 1 (SOD1). The subsequent discovery of ALS-linked genes functioning in RNA processing and proteostasis raised the question of how different biological pathways converge to cause the disease. Both familial and sporadic ALS are characterized by the aggregation of the essential DNA- and RNA-binding protein TDP-43, suggesting a central role in ALS etiology. Here we report that TDP-43 aggregation in neuronal cells of mouse and human origin causes sensitivity to oxidative stress. Aggregated TDP-43 sequesters specific microRNAs (miRNAs) and proteins, leading to increased levels of some proteins while functionally depleting others. Many of those functionally perturbed gene products are nuclear-genome-encoded mitochondrial proteins, and their dysregulation causes a global mitochondrial imbalance that augments oxidative stress. We propose that this stress-aggregation cycle may underlie ALS onset and progression.
Collapse
|
13
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
14
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
15
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Manzano R, Toivonen JM, Moreno-Martínez L, de la Torre M, Moreno-García L, López-Royo T, Molina N, Zaragoza P, Calvo AC, Osta R. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy. Br J Pharmacol 2020; 178:1279-1297. [PMID: 32986860 DOI: 10.1111/bph.15276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Janne Markus Toivonen
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Miriam de la Torre
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain.,Geriatrics Service, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
17
|
Hawley ZCE, Campos-Melo D, Strong MJ. Evidence of A Negative Feedback Network Between TDP-43 and miRNAs Dependent on TDP-43 Nuclear Localization. J Mol Biol 2020; 432:166695. [PMID: 33137311 DOI: 10.1016/j.jmb.2020.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that is integral to RNA processing. Among these functions is a critical role in microRNA (miRNA) biogenesis through interactions with the DROSHA and DICER complexes. It has been previously shown that there is a general reduction in miRNA levels within the spinal cord and spinal motor neurons of amyotrophic lateral sclerosis (ALS) patients. In addition, the most common pathological feature of ALS is re-distribution of TDP-43 from the nucleus to the cytoplasm where it forms cytoplasmic inclusions. Among miRNAs dysregulated in ALS, several are known to regulate TDP-43 expression. In this study, we demonstrate that TDP-43 is in a regulatory negative feedback network with miR-181c-5p and miR-27b-3p that is dependent on its nuclear localization within HEK293T cells. Further, we show that cellular stress which induces a redistribution of TDP-43 from the nucleus to the cytoplasm correlates with the reduced production of miR-27b-3p and miR-181c-5p. This suggests that reduced nuclear TDP-43 disrupts a negative feedback network between itself and miRNAs. These findings provide a further understanding of altered miRNA biogenesis as a key pathogenic process in ALS.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Neuroscience Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
18
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
19
|
Paez-Colasante X, Figueroa-Romero C, Rumora AE, Hur J, Mendelson FE, Hayes JM, Backus C, Taubman GF, Heinicke L, Walter NG, Barmada SJ, Sakowski SA, Feldman EL. Cytoplasmic TDP43 Binds microRNAs: New Disease Targets in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:117. [PMID: 32477070 PMCID: PMC7235295 DOI: 10.3389/fncel.2020.00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, and incurable neurodegenerative disease. Recent studies suggest that dysregulation of gene expression by microRNAs (miRNAs) may play an important role in ALS pathogenesis. The reversible nature of this dysregulation makes miRNAs attractive pharmacological targets and a potential therapeutic avenue. Under physiological conditions, miRNA biogenesis, which begins in the nucleus and includes further maturation in the cytoplasm, involves trans-activation response element DNA/RNA-binding protein of 43 kDa (TDP43). However, TDP43 mutations or stress trigger TDP43 mislocalization and inclusion formation, a hallmark of most ALS cases, that may lead to aberrant protein/miRNA interactions in the cytoplasm. Herein, we demonstrated that TDP43 exhibits differential binding affinity for select miRNAs, which prompted us to profile miRNAs that preferentially bind cytoplasmic TDP43. Using cellular models expressing TDP43 variants and miRNA profiling analyses, we identified differential levels of 65 cytoplasmic TDP43-associated miRNAs. Of these, approximately 30% exhibited levels that differed by more than 3-fold in the cytoplasmic TDP43 models relative to our control model. The hits included both novel miRNAs and miRNAs previously associated with ALS that potentially regulate several predicted genes and pathways that may be important for pathogenesis. Accordingly, these findings highlight specific miRNAs that may shed light on relevant disease pathways and could represent potential biomarkers and reversible treatment targets for ALS.
Collapse
Affiliation(s)
| | | | - Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Laurie Heinicke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Pourhaghighi R, Ash PEA, Phanse S, Goebels F, Hu LZM, Chen S, Zhang Y, Wierbowski SD, Boudeau S, Moutaoufik MT, Malty RH, Malolepsza E, Tsafou K, Nathan A, Cromar G, Guo H, Abdullatif AA, Apicco DJ, Becker LA, Gitler AD, Pulst SM, Youssef A, Hekman R, Havugimana PC, White CA, Blum BC, Ratti A, Bryant CD, Parkinson J, Lage K, Babu M, Yu H, Bader GD, Wolozin B, Emili A. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst 2020; 10:333-350.e14. [PMID: 32325033 PMCID: PMC7938770 DOI: 10.1016/j.cels.2020.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Abstract
Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.
Collapse
Affiliation(s)
- Reza Pourhaghighi
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Regina, Regina, SK, Canada; Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Florian Goebels
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Lucas Z M Hu
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Siwei Chen
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yingying Zhang
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Shayne D Wierbowski
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | - Ramy H Malty
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Edyta Malolepsza
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Kalliopi Tsafou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Aparna Nathan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Graham Cromar
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Hongbo Guo
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ali Al Abdullatif
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Daniel J Apicco
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Ahmed Youssef
- Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Ryan Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Pierre C Havugimana
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA
| | - Carl A White
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS, Milan, Italy
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Kasper Lage
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, USA
| | - Gary D Bader
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Program in Neuroscience, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Program in Bioinformatics, Boston University, Boston, MA, USA; Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, MA, USA; Departments of Biochemistry and Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Picchiarelli G, Dupuis L. Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress 2020; 4:76-91. [PMID: 32292882 PMCID: PMC7146060 DOI: 10.15698/cst2020.04.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A number of neuromuscular and muscular diseases, including amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and several myopathies, are associated to mutations in related RNA-binding proteins (RBPs), including TDP-43, FUS, MATR3 or hnRNPA1/B2. These proteins harbor similar modular primary sequence with RNA binding motifs and low complexity domains, that enables them to phase separate and create liquid microdomains. These RBPs have been shown to critically regulate multiple events of RNA lifecycle, including transcriptional events, splicing and RNA trafficking and sequestration. Here, we review the roles of these disease-related RBPs in muscle and motor neurons, and how their dysfunction in these cell types might contribute to disease.
Collapse
Affiliation(s)
- Gina Picchiarelli
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| | - Luc Dupuis
- Université de Strasbourg, INSERM, Mécanismes Centraux et Périphériques de la Neurodégénérescence, UMR_S 1118, Strasbourg, France
| |
Collapse
|
22
|
Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:938-953. [PMID: 31765945 PMCID: PMC6883328 DOI: 10.1016/j.omtn.2019.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cells rely on mitochondrial respiration for survival. However, the effect of microRNAs (miRNAs) on mitochondria of cells has not been extensively explored. Our results indicated that the overexpression of a miRNA (miR-1) could destroy mitochondria of cancer stem cells. miR-1 was downregulated in melanoma stem cells (MSCs) and breast cancer stem cells (BCSCs) compared with cancer non-stem cells. However, the upregulation of miR-1 in cancer non-stem cells did not induce mitochondrial damage. miR-1 overexpression caused mitochondrial damage of cancer stem cells by directly targeting the 3′ UTRs of MINOS1 (mitochondrial inner membrane organizing system 1) and GPD2 (glycerol-3-phosphate dehydrogenase 2) genes and interacting with LRPPRC (leucine-rich pentatricopeptide-repeat containing) protein, a protein localized in mitochondria. MINOS1, GPD2, and LRPPRC in mitochondria were required for mitochondrial inner membrane. The results of in vitro and in vivo assays demonstrated that miR-1 overexpression induced mitophagy of cancer stem cells. Therefore, our study contributed novel insights into the mechanism of miRNA-mediated regulation of mitochondria morphology of cancer stem cells.
Collapse
|
23
|
Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 2019; 10:102-117. [PMID: 29618024 DOI: 10.1093/jmcb/mjy025] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Myogenesis is a complex process required for skeletal muscle formation during embryonic development and for regeneration and growth of myofibers in adults. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play key roles in regulating cell fate decision and function in various tissues. However, the role of lncRNAs in the regulation of myogenesis remains poorly understood. In this study, we identified a novel muscle-enriched lncRNA called 'Myolinc (AK142388)', which we functionally characterized in the C2C12 myoblast cell line. Myolinc is predominately localized in the nucleus, and its levels increase upon induction of the differentiation. Knockdown of Myolinc impairs the expression of myogenic regulatory factors and formation of multi-nucleated myotubes in cultured myoblasts. Myolinc also regulates the expression of Filip1 in a cis-manner. Similar to Myolinc, knockdown of Filip1 inhibits myogenic differentiation. Furthermore, Myolinc binds to TAR DNA-binding protein 43 (TDP-43), a DNA/RNA-binding protein that regulates the expression of muscle genes (e.g. Acta1 and MyoD). Knockdown of TDP-43 inhibits myogenic differentiation. We also show that Myolinc-TDP-43 interaction is essential for the binding of TDP-43 to the promoter regions of muscle marker genes. Finally, we show that silencing of Myolinc inhibits skeletal muscle regeneration in adult mice. Altogether, our study identifies a novel lncRNA that controls key regulatory networks of myogenesis.
Collapse
Affiliation(s)
- Giuseppe Militello
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Rabiul Hosen
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Yuliya Ponomareva
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Tyler Weirick
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Sajedah Mahmoud Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris 75013, France
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main 60590, Germany
| | - Lidan Zhang
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main 60590, Germany.,German Center for Cardiovascular Research, Partner side Rhein-Main, Frankfurt am Main 60590, Germany.,Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol Cell Neurosci 2019; 100:103396. [PMID: 31445085 DOI: 10.1016/j.mcn.2019.103396] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and glial cells, is a common prominent pathological feature of various major neurodegenerative diseases including ALS, FTD, and Alzheimer's disease (AD). Although the pathomechanisms underlying TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been repeatedly shown to be present in either the inside or outside of mitochondria, and functionally involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the current knowledge of the association of TDP-43 with mitochondria. We then review in detail multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial abnormalities may provide new avenues for neurodegeneration therapeutics.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
25
|
Altered biogenesis of microRNA-1 is associated with cardiac dysfunction in aging of spontaneously hypertensive rats. Mol Cell Biochem 2019; 459:73-82. [PMID: 31104265 DOI: 10.1007/s11010-019-03551-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022]
Abstract
Currently we face the issues of aging-associated pathologies, particularly those leading to heart failure. With that in mind, in current research we focus on aging and hypertension combination as a widely spread threating problem. In a row with functional and morphological characterization of these aging- and hypertension-associated cardiac changes, we evaluate biogenesis of microRNA-1 being one of major microRNAs in the heart. The aim of this study was to check the hypothesis if dysregulation of microRNA-1 biogenesis is associated with heart failure in aged and especially aged hypertensive rats. The experiments were carried out on male SHR and Wistar rats of age 6 months (young) and 18 months (old). The evaluation of hemodynamic parameters was performed in heart left ventricles of narcotized rats using the ultra-small 2F catheter. The development of fibrosis was determined using light and electron microscopy. Levels of mature and immature forms of microRNA-1 and mRNA encoding the proteins involved in its biogenesis were determined using reverse transcription and quantitative PCR. Aging of both Wistar and SHRs is accompanied with altered hemodynamic parameters compared with correspondent younger mates. SHRs, especially old ones, demonstrated significant heart fibrosis. In aged animals, the level of primary microRNA-1 in Wistar rats were 7 times higher (p < 0.05) and in SHR 17 times higher (p < 0.05) in comparison with young rats of the same strain. We also observed 22 times higher level of immature microRNA-1 in the heart of Wistar and 5.9 times higher level for aged hypertensive rats (p < 0.05) compared to young rats. At the same time, the level of mature microRNA-1 occurred 2.5 and 3.2 times lower in respective groups (p < 0.05). In the current study, we observe the significant dysregulation of microRNA-1 processing in the heart associated with aging and arterial hypertension.
Collapse
|
26
|
Grasso M, Piscopo P, Talarico G, Ricci L, Crestini A, Tosto G, Gasparini M, Bruno G, Denti MA, Confaloni A. Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiol Aging 2019; 84:240.e1-240.e12. [PMID: 30826067 DOI: 10.1016/j.neurobiolaging.2019.01.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/20/2018] [Accepted: 01/27/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to develop an easy and minimally invasive assay to detect a plasma miRNA profile in frontotemporal dementia (FTD) patients, with the final aim of discriminating between FTD patients and healthy controls (HCs). After a global miRNA profiling, significant downregulation of miR-663a, miR-502-3p, and miR-206 (p = 0.0001, p = 0.0002, and p = 0.02 respectively) in FTD patients was confirmed when compared with HCs in a larger case-control sample. Moreover, miR-663a and miR-502-3p showed significant differences in both genders, whereas miR-206, only in male subjects. To obtain a discriminating measure between FTD patients and HCs, we calculated a combined score of the 3 miRNAs by applying a Bayesian approach and obtaining a classifier with an accuracy of 84.4%. Moreover, for men, combined miRNA levels showed an excellent sensitivity (100%) and a good specificity (87.5%) in distinguishing FTD patients from HCs. All these findings open new hypotheses in the pathophysiology and new perspectives in the diagnosis of a complex pathology as FTD.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Talarico
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Marina Gasparini
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy.
| | | |
Collapse
|
27
|
Zhang T, Wu YC, Mullane P, Ji YJ, Liu H, He L, Arora A, Hwang HY, Alessi AF, Niaki AG, Periz G, Guo L, Wang H, Elkayam E, Joshua-Tor L, Myong S, Kim JK, Shorter J, Ong SE, Leung AKL, Wang J. FUS Regulates Activity of MicroRNA-Mediated Gene Silencing. Mol Cell 2019; 69:787-801.e8. [PMID: 29499134 DOI: 10.1016/j.molcel.2018.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yen-Ching Wu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick Mullane
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yon Ju Ji
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lu He
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amit Arora
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amelia F Alessi
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amirhossein G Niaki
- Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hejia Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elad Elkayam
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sua Myong
- Department of Biophysics, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John K Kim
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2018; 20:5-20. [DOI: 10.1038/s41580-018-0059-1] [Citation(s) in RCA: 904] [Impact Index Per Article: 129.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Di Pietro L, Lattanzi W, Bernardini C. Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19051534. [PMID: 29786645 PMCID: PMC5983603 DOI: 10.3390/ijms19051534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, for which, to date, no effective treatment to ameliorate the clinical manifestations is available. The long-standing view of ALS as affecting only motor neurons has been challenged by the finding that the skeletal muscle plays an active role in the disease pathogenesis and can be a valuable target for therapeutic strategies. In recent years, non-coding RNAs, including microRNAs, have emerged as important molecules that play key roles in several cellular mechanisms involved in the pathogenic mechanisms underlying various human conditions. In this review, we summarize how the expression of some microRNAs is dysregulated in the skeletal muscle of ALS mouse models and patients. Shedding light on the mechanisms underlying microRNAs dysregulation in the skeletal muscle could clarify some of the processes involved in the pathogenesis of ALS and especially identify new promising therapeutic targets in patients.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Camilla Bernardini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
30
|
Taguchi YH, Wang H. Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:1318. [PMID: 29710810 PMCID: PMC5983737 DOI: 10.3390/ijms19051318] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is among the severe neuro degenerative diseases that lack widely available effective treatments. As the disease progresses, patients lose the control of voluntary muscles. Although the neuronal degeneration is the cause of this disease, the failure mechanism is still unknown. In order to seek genetic mechanisms that initiate and progress ALS, the association of microRNA (miRNA) expression with this disease was considered. Serum miRNAs from healthy controls, sporadic ALS (sALS), familial ALS (fALS) and ALS mutation carriers were investigated. Principal component analysis (PCA)-based unsupervised feature extraction (FE) was applied to these serum miRNA profiles. As a result, we predict miRNAs that can discriminate patients from healthy controls with high accuracy. Thus, these miRNAs can be potential prognosis miRNA biomarkers for ALS.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-855a, Japan.
| | - Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
31
|
Zhang X, Shen B, Cui Y. Signature microRNAs of nuclear Sm complex associated with breast cancer tumorigenesis. J Cell Biochem 2018; 119:5426-5436. [DOI: 10.1002/jcb.26697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 01/22/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Xinyi Zhang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Bo Shen
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Yalei Cui
- College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
32
|
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and lethal neurodegenerative diseases seen comorbidly in up to 15% of patients. Despite several decades of research, no effective treatment or disease-modifying strategies have been developed. We now understand more than before about the genetics and biology behind ALS and FTD, but the genetic etiology for the majority of patients is still unknown and the phenotypic variability observed across patients, even those carrying the same mutation, is enigmatic. Additionally, susceptibility factors leading to neuronal vulnerability in specific central nervous system regions involved in disease are yet to be identified. As the inherited but dynamic epigenome acts as a cell-specific interface between the inherited fixed genome and both cell-intrinsic mechanisms and environmental input, adaptive epigenetic changes might contribute to the ALS/FTD aspects we still struggle to comprehend. This chapter summarizes our current understanding of basic epigenetic mechanisms, how they relate to ALS and FTD, and their potential as therapeutic targets. A clear understanding of the biological mechanisms driving these two currently incurable diseases is urgent-well-needed therapeutic strategies need to be developed soon. Disease-specific epigenetic changes have already been observed in patients and these might be central to this endeavor.
Collapse
Affiliation(s)
- Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rebecca J Lank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
33
|
Herzog JJ, Deshpande M, Shapiro L, Rodal AA, Paradis S. TDP-43 misexpression causes defects in dendritic growth. Sci Rep 2017; 7:15656. [PMID: 29142232 PMCID: PMC5688077 DOI: 10.1038/s41598-017-15914-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) share overlapping genetic causes and disease symptoms, and are linked neuropathologically by the RNA binding protein TDP-43 (TAR DNA binding protein-43 kDa). TDP-43 regulates RNA metabolism, trafficking, and localization of thousands of target genes. However, the cellular and molecular mechanisms by which dysfunction of TDP-43 contributes to disease pathogenesis and progression remain unclear. Severe changes in the structure of neuronal dendritic arbors disrupt proper circuit connectivity, which in turn could contribute to neurodegenerative disease. Although aberrant dendritic morphology has been reported in non-TDP-43 mouse models of ALS and in human ALS patients, this phenotype is largely unexplored with regards to TDP-43. Here we have employed a primary rodent neuronal culture model to study the cellular effects of TDP-43 dysfunction in hippocampal and cortical neurons. We show that manipulation of TDP-43 expression levels causes significant defects in dendritic branching and outgrowth, without an immediate effect on cell viability. The effect on dendritic morphology is dependent on the RNA-binding ability of TDP-43. Thus, this model system will be useful in identifying pathways downstream of TDP-43 that mediate dendritic arborization, which may provide potential new avenues for therapeutic intervention in ALS/FTD.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Mugdha Deshpande
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Leah Shapiro
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Avital A Rodal
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA
| | - Suzanne Paradis
- Department of Biology, Volen Center for Complex Systems, and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, 02454, USA.
| |
Collapse
|
34
|
Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, Ogata J, Yamamoto H, Mohamad Alba S, Azhim A, Kitajima T, Inoue S, Morishita K, Ono K, Koyama-Nasu R, Kotani A. Imbalanced expression of polycistronic miRNA in acute myeloid leukemia. Int J Hematol 2017; 106:811-819. [PMID: 28831750 DOI: 10.1007/s12185-017-2314-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022]
Abstract
miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Higuchi
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Yasuhiro Katahira
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Natsumi Kurosaki
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Naoko Yukihira
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Jun Ogata
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Haruna Yamamoto
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Syakira Mohamad Alba
- Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, University of Technology Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Azran Azhim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Tatsuo Kitajima
- Department of Electronic Systems Engineering, Malaysia-Japan International Institute of Technology, University of Technology Malaysia, 54100, Kuala Lumpur, Malaysia
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Kazuhiro Morishita
- Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Koyama-Nasu
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan. .,Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.
| |
Collapse
|
35
|
Association of microRNAs with Argonaute proteins in the malaria mosquito Anopheles gambiae after blood ingestion. Sci Rep 2017; 7:6493. [PMID: 28747726 PMCID: PMC5529372 DOI: 10.1038/s41598-017-07013-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Drastic changes in gene expression occur after adult female mosquitoes take a blood meal and use the nutrients for egg maturation. A growing body of evidence indicates that microRNAs (miRNAs) contribute to this tightly controlled tissue- and stage-specific gene expression. To investigate the role of miRNAs, we monitored miRNA expression in the mosquito Anopheles gambiae during the 72-h period immediately after blood feeding. We also measured the association of miRNAs with Argonaute 1 (Ago1) and Argonaute 2 (Ago2) to assess the functional status of individual miRNA species. Overall, 173 mature miRNAs were precipitated with Ago1 and Ago2, including 12 new miRNAs, the orthologs of which are found thus far only in other Anopheles species. Ago1 is the predominant carrier of miRNAs in Anopheles gambiae. The abundance and Ago loading of most of the mature miRNAs were relatively stable after blood ingestion. However, miRNAs of the miR-309/286/2944 cluster were considerably upregulated after blood feeding. Injection of the specific antagomir for miR-309 resulted in smaller developing oocytes and ultimately fewer eggs. In addition, the Ago association of some miRNAs was not proportional to their cellular abundance, suggesting that integration of miRNAs into the Ago complexes is regulated by additional mechanisms.
Collapse
|
36
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
37
|
Han C, Shen JK, Hornicek FJ, Kan Q, Duan Z. Regulation of microRNA-1 (miR-1) expression in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:227-232. [PMID: 27923712 DOI: 10.1016/j.bbagrm.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) have been found to play important roles in tumorigenesis, apoptosis, metastasis, and drug resistance in cancer. Among a number of miRs, miR-1 was shown to be predominantly downregulated in almost all examined human cancers. As a tumor suppressor miR involved in post-transcriptional regulation of crucial tumor associated gene expression, miR-1 represents a promising target for anticancer therapy. Re-expression of miR-1 can suppress cancer cell proliferation, promote apoptosis, and reverse drug resistance in cancers both in vitro and in vivo. Recently, the regulatory mechanisms of miR-1 expression have been studied in various cancers in different model systems. In this review, we summarize the mechanisms of miR-1 expression through epigenetic, transcriptional, and post-transcriptional regulation. These regulatory mechanisms of miR-1 expression could help us to understand the functions of altered miR-1 expression and provide valuable insights for further investigations into miR-1 based cancer therapy.
Collapse
Affiliation(s)
- Chao Han
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| | - Zhenfeng Duan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Abstract
Micro ribonucleic acid (microRNA) regulation and expression has become an emerging field in determining the mechanisms regulating a variety of inflammation-mediated diseases. Several studies have focused on specific microRNAs that are differentially expressed in cases of osteoarthritis. Furthermore, several targets of these miRNAs important in disease progression have also been identified. In this review, we focus on microRNA biogenesis, regulation, detection, and quantification with an emphasis on cellular localization and how these concepts may be linked to disease processes such as osteoarthritis. Next, we review the relationships of specific microRNAs to certain features and risk factors associated with osteoarthritis such as inflammation, obesity, autophagy, and cartilage homeostasis. We also identify certain microRNAs that are differentially expressed in osteoarthritis but have unidentified targets and functions in the disease state. Lastly, we identify the potential use of microRNAs for therapeutic purposes and also mention certain remedies that regulate microRNA expression.
Collapse
Affiliation(s)
- Gregory R Sondag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44272, USA
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44272, USA.
| |
Collapse
|
39
|
Zufiría M, Gil-Bea FJ, Fernández-Torrón R, Poza JJ, Muñoz-Blanco JL, Rojas-García R, Riancho J, López de Munain A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 2016; 142:104-129. [DOI: 10.1016/j.pneurobio.2016.05.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022]
|
40
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
41
|
Leung AKL. The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol 2016; 25:601-610. [PMID: 26410406 DOI: 10.1016/j.tcb.2015.07.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are a conserved class of approximately 22 nucleotide (nt) short noncoding RNAs that normally silence gene expression via translational repression and/or degradation of targeted mRNAs in plants and animals. Identifying the whereabouts of miRNAs potentially informs miRNA functions, some of which are perhaps specialized to specific cellular compartments. In this review, the significance of miRNA localizations in the cytoplasm, including those at RNA granules and endomembranes, and the export of miRNAs to extracellular space will be discussed. How miRNA localizations and functions are regulated by protein modifications on the core miRNA-binding protein Argonaute (AGO) during normal and stress conditions will be explored, and in conclusion new AGO partners, non-AGO miRNA-binding proteins, and the emergent understanding of miRNAs found in the nucleoplasm, nucleoli, and mitochondria will be discussed.
Collapse
Affiliation(s)
- Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Ratti A, Buratti E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 2016; 138 Suppl 1:95-111. [PMID: 27015757 DOI: 10.1111/jnc.13625] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and transport/stability to the formation of cytoplasmic and nuclear stress granules. For this reason, the aberrant aggregation of these factors during disease can impair multiple RNA metabolic pathways and eventually lead to neuronal death/inactivation. The purpose of this review is to provide an up-to-date perspective on what we know about this issue at the molecular level. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Antonia Ratti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, Milan, Italy.,Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
43
|
|
44
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
45
|
Muscle-specific microRNAs in skeletal muscle development. Dev Biol 2016; 410:1-13. [DOI: 10.1016/j.ydbio.2015.12.013] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/19/2023]
|
46
|
Noncoding RNA as regulators of cardiac fibrosis: current insight and the road ahead. Pflugers Arch 2016; 468:1103-11. [PMID: 26786602 DOI: 10.1007/s00424-016-1792-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Genomic analyses estimated that many noncoding DNA regions generate noncoding RNAs (ncRNAs). ncRNAs have emerged as key molecular players in the regulation of gene expression in different biological processes. Recent studies have started to reveal the importance of ncRNAs in heart development and suggest also an involvement in cardiac fibrosis. These molecules are emerging as important regulators of cellular process. Here, we review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long noncoding RNAs (LncRNAs) in the regulation of cardiac fibrosis. Furthermore, we review the functions and role of ncRNAs in cardiac biology and discuss these reports and the therapeutic potential of ncRNAs for cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
|
47
|
Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, Garcia-Martin ML, Lopez S, Franco JM, Quintana FJ, Roodveldt C, Pozo D. The ‘Omics’ of Amyotrophic Lateral Sclerosis. Trends Mol Med 2016; 22:53-67. [DOI: 10.1016/j.molmed.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
48
|
Figueroa-Romero C, Hur J, Lunn JS, Paez-Colasante X, Bender DE, Yung R, Sakowski SA, Feldman EL. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms. Mol Cell Neurosci 2015; 71:34-45. [PMID: 26704906 DOI: 10.1016/j.mcn.2015.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Raymond Yung
- Division of Geriatrics and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Geriatric Research, Education and Clinical Care Center, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA.,A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
GTPase Activating Protein (Sh3 Domain) Binding Protein 1 Regulates the Processing of MicroRNA-1 during Cardiac Hypertrophy. PLoS One 2015; 10:e0145112. [PMID: 26675618 PMCID: PMC4684496 DOI: 10.1371/journal.pone.0145112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/27/2015] [Indexed: 01/14/2023] Open
Abstract
Background MicroRNAs (miR) are small, posttranscriptional regulators, expressed as part of a longer primary transcript, following which they undergo nuclear and cytoplasmic processing by Drosha and Dicer, respectively, to form the functional mature ~20mer that gets incorporated into the silencing complex. Others and we have shown that mature miR-1 levels decrease with pressure-induced cardiac hypertrophy, however, there is little or no change in the primary transcript encompassing miR-1 stem-loop, suggesting critical regulatory step in microRNA processing. The objective of this study was to investigate the underlying mechanisms regulating miR-1 expression in cardiomyocytes. Results Here we report that GTPase–activating protein (SH3 domain) binding protein 1 (G3bp1), an endoribonuclease regulates miR-1 processing in cardiomyocytes. G3bp1 is upregulated during cardiac hypertrophy and restricts miR-1 processing by binding to its consensus sequence in the pre-miR-1-2 stem-loop. In accordance, exogenous G3bp1 is sufficient to reduce miR-1 levels, along with derepression of miR-1 targets; General transcription factor IIB (Gtf2b), cyclin dependent factor 9 (Cdk9) and eukaryotic initiation factor 4E (Eif4e). While Cdk9 and Gtf2b are essential for transcription, Eif4e is required for translation. Thus, downregulation of miR-1 is necessary for increase in these molecules. Similar to miR-1 knockdown, G3bp1 overexpression is not sufficient for development of cardiac hypertrophy. Conversely, knockdown of G3bp1 in hypertrophying cardiomyocytes inhibited downregulation of miR-1 and upregulation of its targets along with restricted hypertrophy, suggesting that G3bp1 is necessary for development of cardiac hypertrophy. These results indicate that G3bp1-mediated inhibition of miR-1 processing with growth stimulation results in decrease in mature miR-1 and, thereby, an increase of its targets, which play fundamental roles in the development of hypertrophy. Conclusion G3bp1 posttranscriptionally regulates miRNA-1 processing in the heart, and G3bp1 mediated downregulation of mature miRNA-1 levels is required for the derepression of its targets and increase in gene expression during cardiac hypertrophy.
Collapse
|
50
|
RNA-Binding Proteins in the Regulation of miRNA Activity: A Focus on Neuronal Functions. Biomolecules 2015; 5:2363-87. [PMID: 26437437 PMCID: PMC4693239 DOI: 10.3390/biom5042363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
Posttranscriptional modifications of messenger RNAs (mRNAs) are key processes in the fine-tuning of cellular homeostasis. Two major actors in this scenario are RNA binding proteins (RBPs) and microRNAs (miRNAs) that together play important roles in the biogenesis, turnover, translation and localization of mRNAs. This review will highlight recent advances in the understanding of the role of RBPs in the regulation of the maturation and the function of miRNAs. The interplay between miRNAs and RBPs is discussed specifically in the context of neuronal development and function.
Collapse
|