1
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Cruz DF, Donovan J, Hejenkowska ED, Mu F, Banerjee I, Köhn M, Farinha CM, Swiatecka-Urban A. LMTK2 switches on canonical TGF-β1 signaling in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L769-L782. [PMID: 39316683 PMCID: PMC11560069 DOI: 10.1152/ajplung.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Transforming growth factor (TGF-β1) is a critical profibrotic mediator in chronic lung disease, and there are no specific strategies to mitigate its adverse effects. Activation of TGF-β1 signaling is a multipart process involving ligands, transmembrane receptors, and transcription factors. In addition, an intricate network of adaptor proteins fine-tunes the signaling strength, duration, and activity. Namely, Smad7 recruits growth arrest and DNA damage (GADD34) protein that then interacts with the catalytic subunit of phosphoprotein phosphatase 1 (PP1c) to inactivate TGF-β receptor (TβR)-I and downregulate TGF-β1 signaling. Little is known about how TGF-β1 releases TβR-I from the GADD34-PP1c inhibition to activate its signaling. Transmembrane lemur tyrosine kinase 2 (LMTK2) is a PP1c inhibitor, and our published data showed that TGF-β1 recruits LMTK2 to the cell surface. Here, we tested the hypothesis that TGF-β1 recruits LMTK2 to inhibit PP1c, allowing activation of TβR-I. First, LMTK2 interacted with the TGF-β1 pathway in the human bronchial epithelium at multiple checkpoints. Second, TGF-β1 inhibited PP1c by an LMTK2-dependent mechanism. Third, TGF-β1 used LMTK2 to activate canonical Smad3-mediated signaling. We propose a model whereby the LMTK2-PP1c and Smad7-GADD34-PP1c complexes serve as on-and-off switches in the TGF-β1 signaling in human bronchial epithelium.NEW & NOTEWORTHY Activation of the transforming growth factor (TGF)-β1 signaling pathway is complex, involving many ligands, transmembrane receptors, transcription factors, and modulating proteins. The mechanisms of TGF-β1 signaling activation/inactivation are not fully understood. We propose for the first time a model by which transmembrane lemur tyrosine kinase 2 (LMTK2) forms a complex with phosphoprotein phosphatase 1 (PP1c) to activate TGF-β1 signaling and Smad7, growth arrest and DNA damage (GADD34), and PP1C form a complex to inactivate TGF-β1 signaling in human bronchial epithelium.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joshua Donovan
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Ewelina D Hejenkowska
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ipsita Banerjee
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maja Köhn
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Mórotz GM, Bradbury NA, Caluseriu O, Hisanaga SI, Miller CCJ, Swiatecka-Urban A, Lenz HJ, Moss SJ, Giamas G. A revised nomenclature for the lemur family of protein kinases. Commun Biol 2024; 7:57. [PMID: 38191649 PMCID: PMC10774328 DOI: 10.1038/s42003-023-05671-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.
Collapse
Affiliation(s)
- Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, 60064, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 92-0397, Japan
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Heinz-Josef Lenz
- Department of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, 90033, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1 6BT, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
4
|
Zhang L, Luo P, Mao X, Sun J, Wei J, Yang Y, Zhang Y, Jiang X. Lemur tyrosine kinase 2 has a tumor-inhibition function in human glioblastoma by regulating the RUNX3/Notch pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119509. [PMID: 37271222 DOI: 10.1016/j.bbamcr.2023.119509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Deregulation of lemur tyrosine kinase 2 (LMTK2) is a vital determinant for the onset and progression of malignancies, yet the relationship between LMTK2 and glioblastoma (GBM) is undetermined. This study was carried out to determine the relevance of LMTK2 in GBM. Initiating investigation by assessing The Cancer Genome Atlas (TCGA) data showed LMTK2 mRNA levels were decreased in GBM tissue. Later examination of clinical specimens confirmed low levels of LMTK2 mRNA and protein in GBM tissue. The downregulated level of LMTK2 in patients with GBM was related to poor overall survival. A suppressive function of LMTK2 on the proliferative capability and metastatic potential of GBM cells was demonstrated by overexpressing LMTK2 in GBM cell lines. Moreover, the restoration of LMTK2 augmented the sensitivity of GBM cells to the chemotherapy drug temozolomide. The mechanistic investigation uncovered LMTK2 as a regulator of the runt-related transcription factor 3 (RUNX3)/Notch signaling pathway. The overexpression of LMTK2 increased the expression of RUNX3 while inhibiting the activation of Notch signaling. The silencing of RUNX3 diminished the regulatory role of LMTK2 on Notch signaling. The inhibition of Notch signaling reversed the LMTK2-silencing-elicited protumor effects. Importantly, LMTK2-overexpressed GBM cells displayed weakened tumorigenicity in xenograft models. Our findings illustrate that LMTK2 has a tumor-inhibition function in GBM by constraining Notch signaling via RUNX3. This work indicates the deregulation of the LMTK2-mediated RUNX3/Notch signaling pathway may be a novel molecular mechanism for the malignant transformation of GBMs. This work highlights the interest in LMTK2-related approaches for treating GBM.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Peng Luo
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Jidong Sun
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Yuefan Yang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Yanyu Zhang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, the First Affiliated Hospital, Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Faezov B, Dunbrack RL. AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550125. [PMID: 37547017 PMCID: PMC10401967 DOI: 10.1101/2023.07.21.550125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Humans have 437 catalytically competent protein kinase domains with the typical kinase fold, similar to the structure of Protein Kinase A (PKA). Only 155 of these kinases are in the Protein Data Bank in their active form. The active form of a kinase must satisfy requirements for binding ATP, magnesium, and substrate. From structural bioinformatics analysis of 40 unique substrate-bound kinases, we derived several criteria for the active form of protein kinases. We include requirements on the DFG motif of the activation loop but also on the positions of the N-terminal and C-terminal segments of the activation loop that must be placed appropriately to bind substrate. Because the active form of catalytic kinases is needed for understanding substrate specificity and the effects of mutations on catalytic activity in cancer and other diseases, we used AlphaFold2 to produce models of all 437 human protein kinases in the active form. This was accomplished with templates in the active form from the PDB and shallow multiple sequence alignments of orthologs and close homologs of the query protein. We selected models for each kinase based on the pLDDT scores of the activation loop residues, demonstrating that the highest scoring models have the lowest or close to the lowest RMSD to 22 non-redundant substrate-bound structures in the PDB. A larger benchmark of all 130 active kinase structures with complete activation loops in the PDB shows that 80% of the highest-scoring AlphaFold2 models have RMSD < 1.0 Å and 90% have RMSD < 2.0 Å over the activation loop backbone atoms. Models for all 437 catalytic kinases are available at http://dunbrack.fccc.edu/kincore/activemodels. We believe they may be useful for interpreting mutations leading to constitutive catalytic activity in cancer as well as for templates for modeling substrate and inhibitor binding for molecules which bind to the active state.
Collapse
Affiliation(s)
- Bulat Faezov
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA 19111, USA
- Kazan Federal University, Kazan, Russian Federation
| | - Roland L. Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia PA 19111, USA
| |
Collapse
|
6
|
Hejenkowska ED, Mitash N, Donovan JE, Chandra A, Bertrand C, De Santi C, Greene CM, Mu F, Swiatecka-Urban A. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. J Innate Immun 2023; 15:629-646. [PMID: 37579743 PMCID: PMC10601633 DOI: 10.1159/000533606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19. Studies published early during the COVID-19 pandemic reported that people with cystic fibrosis (PwCF) had milder symptoms, compared to people without CF. This finding was attributed to elevated ACE2 levels and/or treatment with the high efficiency CFTR modulators. Subsequent studies did not confirm these findings reporting variable effects of CFTR gene mutations on ACE2 levels. Transforming growth factor (TGF)-β signaling is essential during SARS-CoV-2 infection and dominates the chronic immune response in severe COVID-19, leading to pulmonary fibrosis. TGF-β1 is a gene modifier associated with more severe lung disease in PwCF but its effects on the COVID-19 course in PwCF is unknown. To understand whether TGF-β1 affects ACE2 levels in the airway, we examined miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in response to TGF-β1. Small RNAseq and micro(mi)RNA profiling identified pathways uniquely affected by TGF-β1, including those associated with SARS-CoV-2 invasion, replication, and the host immune responses. TGF-β1 inhibited ACE2 expression by miR-136-3p and miR-369-5p mediated mechanism in CF and non-CF bronchial epithelial cells. ACE2 levels were higher in two bronchial epithelial cell models expressing the most common CF-causing mutation in CFTR gene F508del, compared to controls without the mutation. After TGF-β1 treatment, ACE2 protein levels were still higher in CF, compared to non-CF cells. TGF-β1 prevented the modulator-mediated rescue of F508del-CFTR function while the modulators did not prevent the TGF-β1 inhibition of ACE2 levels. Finally, TGF-β1 reduced the interaction between ACE2 and the recombinant spike RBD by lowering ACE2 levels and its binding to RBD. Our data demonstrate novel mechanism whereby TGF-β1 inhibition of ACE2 in CF and non-CF bronchial epithelial cells may modulate SARS-CoV-2 pathogenicity and COVID-19 severity. By reducing ACE2 levels, TGF-β1 may decrease entry of SARS-CoV-2 into the host cells while hindering the recovery from COVID-19 due to loss of the anti-inflammatory and regenerative effects of ACE2. The above outcomes may be modulated by other, miRNA-mediated effects exerted by TGF-β1 on the host immune responses, leading to a complex and yet incompletely understood circuitry.
Collapse
Affiliation(s)
| | - Nilay Mitash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua E. Donovan
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Anvita Chandra
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Carol Bertrand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
7
|
Fundamental and translational research in Cystic Fibrosis - why we still need it. J Cyst Fibros 2023; 22 Suppl 1:S1-S4. [PMID: 36577595 DOI: 10.1016/j.jcf.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Clinical treatments for cystic fibrosis (CF) underwent significant changes in the last decade as therapies targeting the basic defect in the CFTR protein were approved. Significant scientific progress has also been made in several other areas that may lead in the future to novel therapeutic approaches that can help fight CF in all individuals living with this disease. Thus, focusing on fundamental research in the CF field has and will continue to be of great importance. This has been one of the aims of the European Cystic Fibrosis Society (ECFS), which has promoted the ECFS Basic Science Conference (BSC) every year since 2004. This special issue covers the topics featured and discussed at the 17th ECFS BSC, held in Albufeira (Portugal) in March 2022, and highlights advances in understanding CFTR, in using personalized medicine, and in developing innovative strategies to identify breakthrough therapies. This introduction highlights the topics presented throughout this special issue, thereby underscoring the relevance of fundamental research in CF.
Collapse
|
8
|
Ghigo A, De Santi C, Hart M, Mitash N, Swiatecka-Urban A. Cell signaling and regulation of CFTR expression in cystic fibrosis cells in the era of high efficiency modulator therapy. J Cyst Fibros 2023; 22 Suppl 1:S12-S16. [PMID: 36621372 DOI: 10.1016/j.jcf.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP- and protein kinase A (PKA)-regulated channel, expressed on the luminal surface of secretory and absorptive epithelial cells. CFTR has a complex, cell-specific regulatory network playing a major role in cAMP- and Ca2+-activated secretion of electrolytes. It secretes intracellular Cl- and bicarbonate and regulates absorption of electrolytes by differentially controlling the activity of the epithelial Na+ channel (ENaC) in colon, airways, and sweat ducts. The CFTR gene expression is regulated by cell-specific, time-dependent mechanisms reviewed elsewhere [1]. This review will focus on the transcriptional, post-transcriptional, and translational regulation of CFTR by cAMP-PKA, non-coding (nc)RNAs, and TGF-β signaling pathways in cystic fibrosis (CF) cells.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Via Nizza 52, Torino 10126, Italy.
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 111St Stephen's Green, Dublin 2, Ireland
| | - Merrill Hart
- Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, United States
| | - Nilay Mitash
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, PA, United States
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, VA, United States
| |
Collapse
|
9
|
Absence of EPAC1 Signaling to Stabilize CFTR in Intestinal Organoids. Cells 2022; 11:cells11152295. [PMID: 35892592 PMCID: PMC9332071 DOI: 10.3390/cells11152295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.
Collapse
|
10
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
11
|
Farinha CM, Gentzsch M. Revisiting CFTR Interactions: Old Partners and New Players. Int J Mol Sci 2021; 22:13196. [PMID: 34947992 PMCID: PMC8703571 DOI: 10.3390/ijms222413196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Remarkable progress in CFTR research has led to the therapeutic development of modulators that rescue the basic defect in cystic fibrosis. There is continuous interest in studying CFTR molecular disease mechanisms as not all cystic fibrosis patients have a therapeutic option available. Addressing the basis of the problem by comprehensively understanding the critical molecular associations of CFTR interactions remains key. With the availability of CFTR modulators, there is interest in comprehending which interactions are critical to rescue CFTR and which are altered by modulators or CFTR mutations. Here, the current knowledge on interactions that govern CFTR folding, processing, and stability is summarized. Furthermore, we describe protein complexes and signal pathways that modulate the CFTR function. Primary epithelial cells display a spatial control of the CFTR interactions and have become a common system for preclinical and personalized medicine studies. Strikingly, the novel roles of CFTR in development and differentiation have been recently uncovered and it has been revealed that specific CFTR gene interactions also play an important role in transcriptional regulation. For a comprehensive understanding of the molecular environment of CFTR, it is important to consider CFTR mutation-dependent interactions as well as factors affecting the CFTR interactome on the cell type, tissue-specific, and transcriptional levels.
Collapse
Affiliation(s)
- Carlos M. Farinha
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Martina Gentzsch
- Marsico Lung Institute and Cystic Fibrosis Research Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pediatrics, Division of Pediatric Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021; 11:210218. [PMID: 34582708 PMCID: PMC8478525 DOI: 10.1098/rsob.210218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Christos Tolias
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Neurosurgery, Royal Sussex County Hospital, Brighton and Sussex University Hospitals (BSUH) NHS Trust, Millennium Building, Brighton BN2 5BE, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
13
|
Cruz DF, Mitash N, Mu F, Farinha CM, Swiatecka-Urban A. Differential Gene Expression Analysis Reveals Global LMTK2 Regulatory Network and Its Role in TGF-β1 Signaling. Front Oncol 2021; 11:596861. [PMID: 33816229 PMCID: PMC8013980 DOI: 10.3389/fonc.2021.596861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Lemur tyrosine kinase 2 (LMTK2) is a transmembrane Ser/Thr kinase whose role has been increasingly recognized; however, when compared to other kinases, understanding of the LMTK2 networks and biological functions is still limited. Recent data have shown that transforming growth factor (TGF)-β1 plays a role in modulating LMTK2 function by controlling its endocytic trafficking in human bronchial epithelial cells. Here, we aimed to unveil the LMTK2 regulatory network and elucidate how it affects cellular functions and disease pathways in either TGF-β1 dependent or independent manner. To understand how the LMTK2 and TGF-β1 pathways interconnect, we knocked down (KD) LMTK2 using small(si)RNA-mediated silencing in human bronchial epithelial CFBE41o- cells, treated cells with TGF-β1 or vehicle control, and performed differential gene expression analysis by RNA sequencing (RNAseq). In vehicle-treated cells, LMTK2 KD affected expression of 2,506 genes while it affected 4,162 genes after TGF-β1 stimulation. Bioinformatics analysis shows that LMTK2 is involved in diverse cellular functions and disease pathways, such as cell death and survival, cellular development, and cancer susceptibility. In summary, our study increases current knowledge about the LMTK2 network and its intersection with the TGF-β1 signaling pathway. These findings will serve as basis for future exploration of the predicted LMTK2 interactions and signaling pathways.
Collapse
Affiliation(s)
- Daniel F Cruz
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Nilay Mitash
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Nephrology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Human Bronchial Epithelial Cell Growth on Homologous Versus Heterologous Tissue Extracellular Matrix. J Surg Res 2021; 263:215-223. [PMID: 33691244 DOI: 10.1016/j.jss.2021.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular matrix (ECM) bioscaffolds produced by decellularization of source tissue have been effectively used for numerous clinical applications. However, decellularized tracheal constructs have been unsuccessful due to the immediate requirement of a functional airway epithelium on surgical implantation. ECM can be solubilized to form hydrogels that have been shown to support growth of many different cell types. The purpose of the present study is to compare the ability of airway epithelial cells to attach, form a confluent monolayer, and differentiate on homologous (trachea) and heterologous (urinary bladder) ECM substrates for potential application in full tracheal replacement. MATERIALS AND METHODS Porcine tracheas and urinary bladders were decellularized. Human bronchial epithelial cells (HBECs) were cultured under differentiation conditions on acellular tracheal ECM and urinary bladder matrix (UBM) bioscaffolds and hydrogels and were assessed by histology and immunolabeling for markers of ciliation, goblet cell formation, and basement membrane deposition. RESULTS Both trachea and urinary bladder tissues were successfully decellularized. HBEC formed a confluent layer on both trachea and UBM scaffolds and on hydrogels created from these bioscaffolds. Cells grown on tracheal and UBM hydrogels, but not on bioscaffolds, showed positive-acetylated tubulin staining and the presence of mucus-producing goblet cells. Collagen IV immunolabeling showed basement membrane deposition by these cells on the surface of the hydrogels. CONCLUSIONS ECM hydrogels supported growth and differentiation of HBEC better than decellularized ECM bioscaffolds and show potential utility as substrates for promotion of a mature respiratory epithelium for regenerative medicine applications in the trachea.
Collapse
|
15
|
Rui Q, Cao S, Wang X, Duan X, Iao X, Dong W, Fang Q, Zhang X, Xue Q. LMTK2 regulates inflammation in lipopolysaccharide-stimulated BV2 cells. Exp Ther Med 2021; 21:219. [PMID: 33603828 DOI: 10.3892/etm.2021.9621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia activation plays vital roles in neuroinflammatory pathologys. Lemurs tyrosine kinase 2 (LMTK2) was reported to regulate NF-κB signals. In the present study, the roles of LMTK2 were investigated in lipopolysaccharide (LPS)-treated BV-2 cells. Reverse transcription-quantitative (RT-q)PCR and western blotting (WB) were utilized to analyze LMTK2 levels in LPS-treated BV2 cells. MTT assay determined cell viabilities. Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were assessed through Griess and enzyme-linked immunosorbent assay (ELISA), respectively. The expression level of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected through RT-qPCR and WB. The release of inflammatory mediators under LPS stimulation, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6 and IL-10, were analyzed through ELISA. WB was used to analyze the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/NAD(P)H dehydrogenase quinone 1 (NQO1) signal pathway. The results showed that the levels of the inflammatory mediators, iNOS, NO, COX-2 and PGE2, along with pro-inflammatory factors, TNF-α, IL-1β and IL-6, were significantly decreased following the induction of exogenous LMTK2 expression by LMTK2 overexpression plasmids in LPS-induced BV2 microglia. In contrast, anti-inflammatory factor IL-10 showed obvious decrease. Additionally, LMTK2 overexpression induced the elevation of Nrf2 in the cytoplasm and nucleus, along with the upregulation of HO-1 and NQO1 expression. In conclusion, LMTK2 is postulated to regulate neuroinflammation possibly through Nrf2 pathway. The present study is essential to reveal the underlying function of LMTK2 and to identify novel therapeutic targets for drug development in treating neuroinflammation.
Collapse
Affiliation(s)
- Qianyun Rui
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shugang Cao
- Department of Neurology, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Xiaozhu Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaoyu Duan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinyi Iao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, P.R. China
| | - Xueguang Zhang
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 P.R. China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, P.R. China.,Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006 P.R. China
| |
Collapse
|
16
|
Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation. Biochem J 2020; 477:2561-2580. [PMID: 32573649 DOI: 10.1042/bcj20200287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Collapse
|
17
|
Cruz DF, Mitash N, Farinha CM, Swiatecka-Urban A. TGF-β1 Augments the Apical Membrane Abundance of Lemur Tyrosine Kinase 2 to Inhibit CFTR-Mediated Chloride Transport in Human Bronchial Epithelia. Front Cell Dev Biol 2020; 8:58. [PMID: 32117984 PMCID: PMC7018669 DOI: 10.3389/fcell.2020.00058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The most common disease-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, F508del, leads to cystic fibrosis (CF), by arresting CFTR processing and trafficking to the plasma membrane. The FDA-approved modulators partially restore CFTR function and slow down the progression of CF lung disease by increasing processing and delivery to the plasma membrane and improving activity of F508del-CFTR Cl– channels. However, the modulators do not correct compromised membrane stability of rescued F508del-CFTR. Transforming growth factor (TGF)-β1 is a well-established gene modifier of CF associated with worse lung disease in F508del-homozygous patients, by inhibiting CFTR biogenesis and blocking the functional rescue of F508del-CFTR. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein localized at the apical and basolateral membrane domain of human bronchial epithelial cells. Phosphorylation of the apical membrane CFTR by LMTK2 triggers its endocytosis and reduces the abundance of membrane-associated CFTR, impairing the CFTR-mediated Cl– transport. We have previously shown that LMTK2 knockdown improves the pharmacologically rescued F508del-CFTR abundance and function. Thus, reducing the LMTK2 recruitment to the plasma membrane may provide a useful strategy to potentiate the pharmacological rescue of F508del-CFTR. Here, we elucidate the mechanism of LMTK2 recruitment to the apical plasma membrane in polarized CFBE41o- cells. TGF-β1 increased LMTK2 abundance selectively at the apical membrane by accelerating its recycling in Rab11-positive vesicles without affecting LMTK2 mRNA levels, protein biosynthesis, or endocytosis. Our data suggest that controlling TGF-β1 signaling may attenuate recruitment of LMTK2 to the apical membrane thereby improving stability of pharmacologically rescued F508del-CFTR.
Collapse
Affiliation(s)
- Daniel F Cruz
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Nilay Mitash
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carlos M Farinha
- BioSystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
18
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
19
|
Bencze J, Szarka M, Bencs V, Szabó RN, Smajda M, Aarsland D, Hortobágyi T. Neuropathological characterization of Lemur tyrosine kinase 2 (LMTK2) in Alzheimer's disease and neocortical Lewy body disease. Sci Rep 2019; 9:17222. [PMID: 31748522 PMCID: PMC6868282 DOI: 10.1038/s41598-019-53638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and neocortical Lewy body disease (LBD) are the most common neurodegenerative dementias, with no available curative treatment. Elucidating pathomechanism and identifying novel therapeutic targets are of paramount importance. Lemur tyrosine kinase 2 (LMTK2) is involved in several physiological and pathological cellular processes. Herewith a neuropathological characterization is presented in AD and neocortical LBD samples using chromogenic and fluorescent LMTK2 immunohistochemistry on post-mortem brain tissues and compared them to age-matched controls (CNTs). LMTK2 immunopositivity was limited to the neuronal cytoplasm. Neurons, including tau-positive tangle-bearing ones, showed decreased chromogenic and immunofluorescent labelling in AD in every cortical layer compared to CNT and neocortical LBD. Digital image analysis was performed to measure the average immunopositivity of groups. Mean grey values were calculated for each group after measuring the grey scale LMTK2 signal intensity of each individual neuron. There was significant difference between the mean grey values of CNT vs. AD and neocortical LBD vs. AD. The moderate decrease in neocortical LBD suggests the effect of coexisting AD pathology. We provide neuropathological evidence on decreased neuronal LMTK2 immunolabelling in AD, with implications for pathogenesis.
Collapse
Affiliation(s)
- János Bencze
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Máté Szarka
- Horvath Csaba Memorial Institute of Bioanalytical Research, Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Vitrolink Ltd., Debrecen, Hungary
| | - Viktor Bencs
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renáta Nóra Szabó
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Tibor Hortobágyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary.
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
20
|
Bao H, Gao M. Overexpression of lemur tyrosine kinase-2 protects neurons from oxygen-glucose deprivation/reoxygenation-induced injury through reinforcement of Nrf2 signaling by modulating GSK-3β phosphorylation. Biochem Biophys Res Commun 2019; 521:964-970. [PMID: 31722791 DOI: 10.1016/j.bbrc.2019.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022]
Abstract
Lemur tyrosine kinase-2 (LMTK2), a newly identified serine/threonine kinase, is a potential regulator of cell survival and apoptosis. However, little is known about its role in regulating neuronal survival during cerebral ischemia/reperfusion injury. The present study aimed to explore the potential function of LMTK2 in regulating neuronal survival using an in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury. Herein, we found that LMTK2 expression was markedly decreased in neurons following OGD/R exposure. Gain-of-function experiments demonstrated that LMTK2 overexpression significantly improved the viability and reduced apoptosis of neurons with OGD/R-induced injury. Moreover, LMTK2 overexpression reduced the production of reactive oxygen species (ROS) in OGD/R-exposed neurons. Notably, our results elucidated that LMTK2 overexpression reinforced the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant signaling associated with increased glycogen synthase kinase-3β (GSK-3β) phosphorylation. GSK-3β inhibition by its specific inhibitor significantly reversed LMTK2-inhibition-linked apoptosis and ROS production. Additionally, silencing Nrf2 partially reversed the LMTK2-overexpression-mediated neuroprotective effect in OGD/R-injured neurons. Taken together, our results demonstrated that LMTK2 overexpression alleviated OGD/R-induced neuronal apoptosis and oxidative damage by enhancing Nrf2/ARE antioxidant signaling via modulation of GSK-3β phosphorylation. Our study suggests LMTK2 is a potential target for neuroprotection during cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Bao
- Department of Anesthesiology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, China
| | - Min Gao
- Department of Anesthesiology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, China.
| |
Collapse
|
21
|
Hou X, Wu Q, Rajagopalan C, Zhang C, Bouhamdan M, Wei H, Chen X, Zaman K, Li C, Sun X, Chen S, Frizzell RA, Sun F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation. FASEB J 2019; 33:12602-12615. [PMID: 31450978 PMCID: PMC9292138 DOI: 10.1096/fj.201901050r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023]
Abstract
Protein interactions that stabilize the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the apical membranes of epithelial cells have not yet been fully elucidated. We identified keratin 19 (CK19 or K19) as a novel CFTR-interacting protein. CK19 overexpression stabilized both wild-type (WT)-CFTR and Lumacaftor (VX-809)-rescued F508del-CFTR (where F508del is the deletion of the phenylalanine residue at position 508) at the plasma membrane (PM), promoting Cl- secretion across human bronchial epithelial (HBE) cells. CK19 prevention of Rab7A-mediated lysosomal degradation was a key mechanism in apical CFTR stabilization. Unexpectedly, CK19 expression was decreased by ∼40% in primary HBE cells from homogenous F508del patients with CF relative to non-CF controls. CK19 also positively regulated multidrug resistance-associated protein 4 expression at the PM, suggesting that this keratin may regulate the apical expression of other ATP-binding cassette proteins as well as CFTR.-Hou, X., Wu, Q., Rajagopalan, C., Zhang, C., Bouhamdan, M., Wei, H., Chen, X., Zaman, K., Li, C., Sun, X., Chen, S., Frizzell, R. A., Sun, F. CK19 stabilizes CFTR at the cell surface by limiting its endocytic pathway degradation.
Collapse
Affiliation(s)
- Xia Hou
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Qingtian Wu
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Carthic Rajagopalan
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Chunbing Zhang
- Department of Biochemistry and Molecular BiologyJiamusi University School of Basic MedicineJiamusiChina
| | - Mohamad Bouhamdan
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Hongguang Wei
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Xuequn Chen
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| | - Khalequz Zaman
- Department of Pediatric Respiratory MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State UniversityAtlantaGeorgiaUSA
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Georgia State UniversityAtlantaGeorgiaUSA
| | - Song Chen
- Institute of Medical Biotechnology, Jiangsu College of NursingHuai'anChina
| | - Raymond A. Frizzell
- Department of Pediatrics
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Fei Sun
- Department of PhysiologyWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
22
|
Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells. Int J Mol Sci 2019; 20:ijms20194933. [PMID: 31590401 PMCID: PMC6801718 DOI: 10.3390/ijms20194933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene lead to cystic fibrosis (CF). The most common mutation F508del inhibits folding and processing of CFTR protein. FDA-approved correctors rescue the biosynthetic processing of F508del-CFTR protein, while potentiators improve the rescued CFTR channel function. Transforming growth factor (TGF-β1), overexpressed in many CF patients, blocks corrector/potentiator rescue by inhibiting CFTR mRNA in vitro. Increased TGF-β1 signaling and acquired CFTR dysfunction are present in other lung diseases. To study the mechanism of TGF-β1 repression of CFTR, we used molecular, biochemical, and functional approaches in primary human bronchial epithelial cells from over 50 donors. TGF-β1 destabilized CFTR mRNA in cells from lungs with chronic disease, including CF, and impaired F508del-CFTR rescue by new-generation correctors. TGF-β1 increased the active pool of selected micro(mi)RNAs validated as CFTR inhibitors, recruiting them to the RNA-induced silencing complex (RISC). Expression of F508del-CFTR globally modulated TGF-β1-induced changes in the miRNA landscape, creating a permissive environment required for degradation of F508del-CFTR mRNA. In conclusion, TGF-β1 may impede the full benefit of corrector/potentiator therapy in CF patients. Studying miRNA recruitment to RISC under disease-specific conditions may help to better characterize the miRNAs utilized by TGF-β1 to destabilize CFTR mRNA.
Collapse
|
23
|
Zhao G, Song Y, Dong L, Shi H, Li H, Yang L, Wang J. Silencing of lemur tyrosine kinase 2 restricts the proliferation and invasion of hepatocellular carcinoma through modulation of GSK-3β/Wnt/β-catenin signaling. Biochem Biophys Res Commun 2019; 517:722-728. [PMID: 31395338 DOI: 10.1016/j.bbrc.2019.07.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Lemur tyrosine kinase 2 (LMTK2) was recently identified as a novel cancer-related gene in several human cancers. However, little is known of its function in hepatocellular carcinoma (HCC). Here we aim to investigate the expression pattern, biological function, and regulatory mechanism of LMTK2 in HCC. We found that LMTK2 was highly expressed in HCC tissues, and patients with high expression of LMTK2 in tumor tissues had shorter survival times. LMTK2 expression was also elevated in HCC cell lines, and LMTK2 silencing markedly repressed the proliferation and invasion of HCC cells. By contrast, LMTK2 overexpression exerted promotion effects on HCC cell proliferation and invasion. Our results demonstrate that LMTK2 silencing decreases the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and the expression of an active β-catenin protein, leading to inhibition of Wnt/β-catenin signaling. Notably, GSK-3β inhibition significantly reversed the LMTK2 silencing-mediated antitumor effect on proliferation, invasion, and Wnt/β-catenin signaling in HCC cells. LMTK2 silencing retarded the tumor growth of HCC cells in an in vivo xenograft tumor model, associated with downregulation of Wnt/β-catenin signaling. In conclusion, our findings suggest that silencing of LMTK2 suppresses the proliferation and invasion of HCC cells through the inhibition of Wnt/β-catenin signaling, via GSK-3β, highlighting the importance of LMTK2/GSK-3β/Wnt/β-catenin signaling in HCC progression.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Yahua Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
24
|
Loureiro CA, Santos JD, Matos AM, Jordan P, Matos P, Farinha CM, Pinto FR. Network Biology Identifies Novel Regulators of CFTR Trafficking and Membrane Stability. Front Pharmacol 2019; 10:619. [PMID: 31231217 PMCID: PMC6559121 DOI: 10.3389/fphar.2019.00619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
In cystic fibrosis, the most common disease-causing mutation is F508del, which causes not only intracellular retention and degradation of CFTR, but also defective channel gating and decreased membrane stability of the small amount that reaches the plasma membrane (PM). Thus, pharmacological correction of mutant CFTR requires targeting of multiple cellular defects in order to achieve clinical benefit. Although small-molecule compounds have been identified and commercialized that can correct its folding or gating, an efficient retention of F508del CFTR at the PM has not yet been explored pharmacologically despite being recognized as a crucial factor for improving functional rescue of chloride transport. In ongoing efforts to determine the CFTR interactome at the PM, we used three complementary approaches: targeting proteins binding to tyrosine-phosphorylated CFTR, protein complexes involved in cAMP-mediated CFTR stabilization at the PM, and proteins selectively interacting at the PM with rescued F508del-CFTR but not wt-CFTR. Using co-immunoprecipitation or peptide–pull down strategies, we identified around 400 candidate proteins through sequencing of complex protein mixtures using the nano-LC Triple TOF MS technique. Key candidate proteins were validated for their robust interaction with CFTR-containing protein complexes and for their ability to modulate the amount of CFTR expressed at the cell surface of bronchial epithelial cells. Here, we describe how we explored the abovementioned experimental datasets to build a protein interaction network with the aim of identifying novel pharmacological targets to rescue CFTR function in cystic fibrosis (CF) patients. We identified and validated novel candidate proteins that were essential components of the network but not detected in previous proteomic analyses.
Collapse
Affiliation(s)
- Cláudia Almeida Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - João D Santos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Margarida Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Peter Jordan
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Paulo Matos
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Human Genetics, National Health Institute "Dr. Ricardo Jorge," Lisbon, Portugal
| | - Carlos M Farinha
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
25
|
Cruz DF, Farinha CM, Swiatecka-Urban A. Unraveling the Function of Lemur Tyrosine Kinase 2 Network. Front Pharmacol 2019; 10:24. [PMID: 30761001 PMCID: PMC6361741 DOI: 10.3389/fphar.2019.00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022] Open
Abstract
Lemur Tyrosine Kinase 2 (LMTK2) is a recently cloned transmembrane protein, actually a serine/threonine kinase named after the Madagascar primate lemur due to the long intracellular C-terminal tail. LMTK2 is relatively little known, compared to other kinases but its role has been increasingly recognized. Published data show that LMTK2 regulates key cellular events, including endocytic trafficking, nerve growth factor signaling, apoptosis, and Cl- transport. Abnormalities in the expression and function of LMTK2 are associated with human disease, such as neurodegeneration, cancer and infertility. We summarized the current state of knowledge on LMTK2 structure, regulation, interactome, intracellular localization, and tissue expression and point out future research directions to better understand the role of LMTK2.
Collapse
Affiliation(s)
- Daniel F. Cruz
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
- Department of Nephrology, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos M. Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, Portugal
| | | |
Collapse
|
26
|
Pankow S, Bamberger C, Yates JR. A posttranslational modification code for CFTR maturation is altered in cystic fibrosis. Sci Signal 2019; 12:12/562/eaan7984. [PMID: 30600261 DOI: 10.1126/scisignal.aan7984] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multistep process regulating the maturation of membrane proteins in the endoplasmic reticulum (ER) and the secretory pathway is disrupted in many protein misfolding disorders. Mutations in the ion channel CFTR that impair its folding and subsequent localization to the plasma membrane cause cystic fibrosis (CF), an inherited and eventually lethal disease that impairs the function of multiple organs, mostly the lungs. Here, we found that proper maturation of CFTR is dependent on cross-talk between phosphorylation and methylation events in the regulatory insertion (RI) element of the protein. Manipulating these posttranslational modifications (PTMs) prevented the maturation of wild-type CFTR and instead induced its degradation by ER quality control systems. Deletion of Phe508 (ΔF508), the most prevalent mutation in CF, and other mutations in CFTR that impair its trafficking, such as N1303K, also led to quantitative and qualitative PTM changes that prevented the maturation of misfolded CFTR. Further analysis revealed that a wild-type CFTR-like PTM pattern and function was restored in ΔF508 CFTR when cells were cultured at 28°C but only in the presence of the kinase CK2α. Furthermore, the ability to replicate this PTM pattern predicted the efficacy of treatments in restoring ΔF508 CFTR activity. Accordingly, evaluation of patient information revealed that point mutations of several of the modification sites are associated with clinical CF. These findings identify a minimal quantitative and qualitative PTM code for CFTR maturation that distinguishes correctly folded from misfolded CFTR.
Collapse
Affiliation(s)
- Sandra Pankow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Casimir Bamberger
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1867:165372. [PMID: 30597196 DOI: 10.1016/j.bbadis.2018.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways.
Collapse
|
28
|
Fukuda R, Okiyoneda T. Peripheral Protein Quality Control as a Novel Drug Target for CFTR Stabilizer. Front Pharmacol 2018; 9:1100. [PMID: 30319426 PMCID: PMC6170605 DOI: 10.3389/fphar.2018.01100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Conformationally defective cystic fibrosis transmembrane conductance regulator (CFTR) including rescued ΔF508-CFTR is rapidly eliminated from the plasma membrane (PM) even in the presence of a CFTR corrector and potentiator, limiting the therapeutic effort of the combination therapy. CFTR elimination from the PM is determined by the conformation-dependent ubiquitination as a part of the peripheral quality control (PQC) mechanism. Recently, the molecular machineries responsible for the CFTR PQC mechanism which includes molecular chaperones and ubiquitination enzymes have been revealed. This review summarizes the molecular mechanism of the CFTR PQC and discusses the possibility that the peripheral ubiquitination mechanism becomes a novel drug target to develop the CFTR stabilizer as a novel class of CFTR modulator.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Nishinomiya, Japan
| |
Collapse
|
29
|
Dey I, Bradbury NA. Physiology of the Gut: Experimental Models for Investigating Intestinal Fluid and Electrolyte Transport. CURRENT TOPICS IN MEMBRANES 2018; 81:337-381. [PMID: 30243437 DOI: 10.1016/bs.ctm.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Once thought to be exclusively an absorptive tissue, the intestine is now recognized as an important secretory tissue, playing a key role in body ion and fluid homeostasis. Given the intestine's role in fluid homeostasis, it is not surprising that important clinical pathologies arise from imbalances in fluid absorption and secretion. Perhaps the most important examples of this can be seen in enterotoxigenic secretory diarrheas with extreme fluid secretion, and Cystic Fibrosis with little or no fluid secretion. A mechanistic understanding of the cellular pathways regulating ion and fluid transport has been obtained from a variety of approaches and model systems. These have ranged from the intact intestine to a single intestinal epithelial cell type. Although for many years a reductionist approach has held sway for investigating intestinal transport, the growing realization that physiologic processes should really be examined within a physiological context has seen a marked increase in studies using models that are essentially mini-intestines in a dish. The aim of this chapter is to provide a historical context for our understanding of intestinal ion and fluid transport, and to highlight the model systems that have been used to acquire this knowledge.
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, United States
| |
Collapse
|
30
|
Bencze J, Mórotz GM, Seo W, Bencs V, Kálmán J, Miller CCJ, Hortobágyi T. Biological function of Lemur tyrosine kinase 2 (LMTK2): implications in neurodegeneration. Mol Brain 2018; 11:20. [PMID: 29631601 PMCID: PMC5891947 DOI: 10.1186/s13041-018-0363-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative disorders are frequent, incurable diseases characterised by abnormal protein accumulation and progressive neuronal loss. Despite their growing prevalence, the underlying pathomechanism remains unclear. Lemur tyrosine kinase 2 (LMTK2) is a member of a transmembrane serine/threonine-protein kinase family. Although it was described more than a decade ago, our knowledge on LMTK2’s biological functions is still insufficient. Recent evidence has suggested that LMTK2 is implicated in neurodegeneration. After reviewing the literature, we identified three LMTK2-mediated mechanisms which may contribute to neurodegenerative processes: disrupted axonal transport, tau hyperphosphorylation and enhanced apoptosis. Moreover, LMTK2 gene expression is decreased in an Alzheimer’s disease mouse model. According to these features, LMTK2 might be a promising therapeutic target in near future. However, further investigations are required to clarify the exact biological functions of this unique protein.
Collapse
Affiliation(s)
- János Bencze
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Gábor Miklós Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Woosung Seo
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - Viktor Bencs
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary
| | - János Kálmán
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Christopher Charles John Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tibor Hortobágyi
- Division of Neuropathology, Institute of Pathology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, H-4032, Hungary. .,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary. .,Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary. .,Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
31
|
Strategies for the etiological therapy of cystic fibrosis. Cell Death Differ 2017; 24:1825-1844. [PMID: 28937684 PMCID: PMC5635223 DOI: 10.1038/cdd.2017.126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Etiological therapies aim at repairing the underlying cause of cystic fibrosis (CF), which is the functional defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein owing to mutations in the CFTR gene. Among these, the F508del CFTR mutation accounts for more than two thirds of CF cases worldwide. Two somehow antinomic schools of thought conceive CFTR repair in a different manner. According to one vision, drugs should directly target the mutated CFTR protein to increase its plasma membrane expression (correctors) or improve its ion transport function (potentiators). An alternative strategy consists in modulating the cellular environment and proteostasis networks in which the mutated CFTR protein is synthesized, traffics to its final destination, the plasma membrane, and is turned over. We will analyze distinctive advantages and drawbacks of these strategies in terms of their scientific and clinical dimensions, and we will propose a global strategy for CF research and development based on a reconciliatory approach. Moreover, we will discuss the utility of preclinical biomarkers that may guide the personalized, patient-specific implementation of CF therapies.
Collapse
|
32
|
Dey I, Bradbury NA. Activation of TPA-response element present in human Lemur Tyrosine Kinase 2 ( lmtk2) gene increases its expression. Biochem Biophys Rep 2017; 12:140-150. [PMID: 29090275 PMCID: PMC5645172 DOI: 10.1016/j.bbrep.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023] Open
Abstract
Regulatory elements present in the promoter of a gene drive the expression of the gene in response to various stimuli. Lemur Tyrosine Kinase 2 (LMTK2) is a membrane-anchored Serine/Threonine kinase involved in endosomal protein trafficking and androgen signaling amongst other processes. Previous studies have shown this protein to be of therapeutic importance in cystic fibrosis and prostate cancer. However, nothing is known about the endogenous expression of this protein and its regulation. In this study, we analyzed the gene encoding human LMTK2, to look for possible regulatory elements that could affect its expression. Interestingly, the human lmtk2 gene contains a consensus TPA (12- O-Tetradecanoylphorbol-13-acetate)-responsive element (TRE) in the region preceding its start codon. The element with the sequence TGAGTCA modulates LMTK2 expression in response to treatment with TPA, a synthetic Protein Kinase C (PKC) activator. It serves as the binding site for c-Fos, a member of the Activator Protein −1 (AP-1) transcription factor complex, which is transactivated by PKC. We observed that TPA, at low concentrations, increases the promoter activity of LMTK2, which leads to a subsequent increase in the mRNA transcript and protein levels. This modulation occurs through binding of the AP-1 transcription factor complex to the lmtk2 promoter. Thus, our current study has established LMTK2 as a TPA-responsive element-containing gene, which is upregulated downstream of PKC activation. Considering the involvement of LMTK2 in intracellular processes as well as pathological conditions, our findings demonstrate a way to modulate intracellular LMTK2 levels pharmacologically for potentially therapeutic purposes. The promoter for the lmtk2 gene bears a TPA response element. PKC activation increases the expression of both LMTK2 mRNA and protein. AP-1 transcription complexes mediate PKC regulation of the lmtk2 gene. Pharmacological manipulation of LMTK2 expression has potential clinical merit.
Collapse
Key Words
- 4α-TPA, 4α-phorbol 12, 13-didecanoate
- ACD, Actinomycin D
- AP-1 complex
- AP-1, Activator Protein – 1
- Chx, Cycloheximide
- GM-CSF, Granulocyte Macrophage Colony Stimulating Factor
- LMTK2
- LMTK2, Lemur Tyrosine Kinase 2
- PKC activation
- PKC, Protein Kinase C
- Phorbol ester
- Promoter
- SEAP, Secretory Alkaline Phosphatase
- TPA, Phorbol 12-myristate 13-acetate
- TPA-responsive element
- TRE, TPA-response element
Collapse
Affiliation(s)
- Isha Dey
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago IL, USA
| |
Collapse
|
33
|
Farinha CM, Miller E, McCarty N. Protein and lipid interactions - Modulating CFTR trafficking and rescue. J Cyst Fibros 2017; 17:S9-S13. [PMID: 28887112 DOI: 10.1016/j.jcf.2017.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/28/2017] [Indexed: 12/26/2022]
Abstract
Different levels of CFTR regulation in the cell contribute to a stringent control of chloride secretion in epithelia. Tuning of chloride transport is achieved by modulating CFTR biogenesis, exit from the endoplasmic reticulum, trafficking, membrane stability and channel activity. In this short review, we summarize recent findings identifying interactions with other proteins - directly or through membrane lipids - and briefly discuss how these observations can provide clues to the design of better therapeutic approaches.
Collapse
Affiliation(s)
- Carlos M Farinha
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | - Nael McCarty
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
34
|
Farinha CM, Canato S. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. Cell Mol Life Sci 2017; 74:39-55. [PMID: 27699454 PMCID: PMC11107782 DOI: 10.1007/s00018-016-2387-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/10/2023]
Abstract
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Sara Canato
- BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
35
|
McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016; 311:L719-L733. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis.
Collapse
Affiliation(s)
- Michelle L McClure
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
36
|
Farinha CM, Swiatecka-Urban A, Brautigan DL, Jordan P. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity. Front Chem 2016; 4:1. [PMID: 26835446 PMCID: PMC4718993 DOI: 10.3389/fchem.2016.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of Lisboa Lisbon, Portugal
| | - Agnieszka Swiatecka-Urban
- Department of Cell Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA; Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Peter Jordan
- Faculty of Sciences, Biosystems and Integrative Sciences Institute, University of LisboaLisbon, Portugal; Department of Human Genetics, National Health Institute Dr Ricardo JorgeLisbon, Portugal
| |
Collapse
|
37
|
Butler EC, Bradbury NA. Signal dependent ER export of lemur tyrosine kinase 2. BMC Cell Biol 2015; 16:26. [PMID: 26559041 PMCID: PMC4642647 DOI: 10.1186/s12860-015-0072-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The membrane anchored kinase, LMTK2, is a serine/threonine kinase predominantly localized to endosomal compartments. LMTK2 has been shown to be involved in the trafficking of the CFTR ion channel, the androgen receptor, as well as modulating neurodegeneration. As a membrane anchored protein, LMTK2 must be exported from the ER, yet the mechanisms whereby LMTK2 is sequestered within the ER for efficient export are unknown. METHODS Sequence analysis of the carboxyl tail of LMTK2 revealed a putative di-acidic ER export motif. Site-directed mutagenesis was utilized to ablate this potential motif. Subcellular fractionation, immunofluorescence microscopy, and transferrin recycling assays were used to determine the consequence of mutating LMTK2's export motif. RESULTS Mutation of the di-acidic export motif led to ER retention of LMTK2, and an increase in protein half-life and a concomitant loss of LMTK2 from its appropriate terminal destination. Loss of LMTK2 from endosomal compartments by preventing its release from the ER is linked to a reduction in transferrin recycling. CONCLUSIONS We have identified a di-acidic ER export motif within the carboxyl tail of the membrane anchored kinase LMTK2. This sequence is used by LMTK2 for its efficient export from the ER.
Collapse
Affiliation(s)
- E C Butler
- Department of Physiology and Biophysics, Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| |
Collapse
|
38
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
39
|
Sphingosine-1-Phosphate Is a Novel Regulator of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Activity. PLoS One 2015; 10:e0130313. [PMID: 26079370 PMCID: PMC4469317 DOI: 10.1371/journal.pone.0130313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) attenuates sphingosine-1-phosphate (S1P) signaling in resistance arteries and has emerged as a prominent regulator of myogenic vasoconstriction. This investigation demonstrates that S1P inhibits CFTR activity via adenosine monophosphate-activated kinase (AMPK), establishing a potential feedback link. In Baby Hamster Kidney (BHK) cells expressing wild-type human CFTR, S1P (1μmol/L) attenuates forskolin-stimulated, CFTR-dependent iodide efflux. S1P's inhibitory effect is rapid (within 30 seconds), transient and correlates with CFTR serine residue 737 (S737) phosphorylation. Both S1P receptor antagonism (4μmol/L VPC 23019) and AMPK inhibition (80μmol/L Compound C or AMPK siRNA) attenuate S1P-stimluated (i) AMPK phosphorylation, (ii) CFTR S737 phosphorylation and (iii) CFTR activity inhibition. In BHK cells expressing the ΔF508 CFTR mutant (CFTRΔF508), the most common mutation causing cystic fibrosis, both S1P receptor antagonism and AMPK inhibition enhance CFTR activity, without instigating discernable correction. In summary, we demonstrate that S1P/AMPK signaling transiently attenuates CFTR activity. Since our previous work positions CFTR as a negative S1P signaling regulator, this signaling link may positively reinforce S1P signals. This discovery has clinical ramifications for the treatment of disease states associated with enhanced S1P signaling and/or deficient CFTR activity (e.g. cystic fibrosis, heart failure). S1P receptor/AMPK inhibition could synergistically enhance the efficacy of therapeutic strategies aiming to correct aberrant CFTR trafficking.
Collapse
|
40
|
Billet A, Jia Y, Jensen T, Riordan JR, Hanrahan JW. Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation. FASEB J 2015; 29:3945-53. [PMID: 26062600 DOI: 10.1096/fj.15-273151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/26/2015] [Indexed: 11/11/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) channel is activated by PKA phosphorylation of a regulatory domain that interacts dynamically with multiple CFTR domains and with other proteins. The large number of consensus sequences for phosphorylation by PKA has naturally focused most attention on regulation by this kinase. We report here that human CFTR is also phosphorylated by the tyrosine kinases p60c-Src (proto-oncogene tyrosine-protein kinase) and the proline-rich tyrosine kinase 2 (Pyk2), and they can also cause robust activation of quiescent CFTR channels. In excised patch-clamp experiments, CFTR activity during exposure to Src or Pyk2 reached ∼80% of that stimulated by PKA. Exposure to PKA after Src or Pyk2 caused a further increase to the level induced by PKA alone, implying a common limiting step. Channels became spontaneously active when v-Src or the catalytic domain of Pyk2 was coexpressed with CFTR and were further stimulated by the tyrosine phosphatase inhibitor dephostatin. Exogenous Src also activated 15SA-CFTR, a variant that lacks 15 potential PKA sites and has little response to PKA. PKA-independent activation by tyrosine phosphorylation has implications for the mechanism of regulation by the R domain and for the physiologic functions of CFTR.
Collapse
Affiliation(s)
- Arnaud Billet
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - Yanlin Jia
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - Tim Jensen
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - John R Riordan
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| | - John W Hanrahan
- *Department of Physiology and Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Biophysics and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA; and Research Institute of the McGill University Hospital Centre, Montreal, Quebec, Canada
| |
Collapse
|