1
|
Martín M, Bolognesi B. Massive mutagenesis reveals an incomplete amyloid motif in Bri2 that turns amyloidogenic upon C-terminal extension. Proc Natl Acad Sci U S A 2025; 122:e2415521122. [PMID: 40314981 PMCID: PMC12067230 DOI: 10.1073/pnas.2415521122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/20/2025] [Indexed: 05/03/2025] Open
Abstract
Stop-loss mutations cause over twenty different diseases. The effects of stop-loss mutations can have multiple consequences that are, however, hard to predict. Stop-loss in ITM2B/BRI2 results in C-terminal extension of the encoded protein and, upon furin cleavage, in the production of two 34 amino acid long peptides, ADan and ABri, that accumulate as amyloids in the brains of patients affected by familial Danish and British Dementia. To systematically explore the consequences of Bri2 C-terminal extension, here, we use a yeast-based massively parallel assay to measure amyloid formation for 676 ADan substitutions and identify the region that forms the putative amyloid core of ADan fibrils, located between positions 20 and 26, where stop-loss occurs. Moreover, we measure amyloid formation for ~18,000 random C-terminal extensions of Bri2 and find that ~32% of these sequences can nucleate amyloids. We find that the amino acid composition of these nucleating sequences varies with peptide length and that short extensions of two specific amino acids (Aliphatics, Aromatics, and Cysteines) are sufficient to generate de novo amyloid cores. Overall, our results show that the C-terminus of Bri2 contains an incomplete amyloid motif that can turn amyloidogenic upon extension. C-terminal extension with de novo formation of amyloid motifs may thus be a widespread pathogenic mechanism resulting from stop-loss, highlighting the importance of determining the impact of these mutations for other sequences across the genome.
Collapse
Affiliation(s)
- Mariano Martín
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona08028, Spain
| |
Collapse
|
2
|
Vega A, Planas A, Biarnés X. A Practical Guide to Computational Tools for Engineering Biocatalytic Properties. Int J Mol Sci 2025; 26:980. [PMID: 39940748 PMCID: PMC11817184 DOI: 10.3390/ijms26030980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The growing demand for efficient, selective, and stable enzymes has fueled advancements in computational enzyme engineering, a field that complements experimental methods to accelerate enzyme discovery. With a plethora of software and tools available, researchers from different disciplines often face challenges in selecting the most suitable method that meets their requirements and available starting data. This review categorizes the computational tools available for enzyme engineering based on their capacity to enhance the following specific biocatalytic properties of biotechnological interest: (i) protein-ligand affinity/selectivity, (ii) catalytic efficiency, (iii) thermostability, and (iv) solubility for recombinant enzyme production. By aligning tools with their respective scoring functions, we aim to guide researchers, particularly those new to computational methods, in selecting the appropriate software for the design of protein engineering campaigns. De novo enzyme design, involving the creation of novel proteins, is beyond this review's scope. Instead, we focus on practical strategies for fine-tuning enzymatic performance within an established reference framework of natural proteins.
Collapse
Affiliation(s)
- Aitor Vega
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain;
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain;
- Royal Academy of Sciences and Arts of Barcelona, 08002 Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain;
| |
Collapse
|
3
|
Almeida ZL, Vaz DC, Brito RMM. Transthyretin mutagenesis: impact on amyloidogenesis and disease. Crit Rev Clin Lab Sci 2024; 61:616-640. [PMID: 38850014 DOI: 10.1080/10408363.2024.2350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Transthyretin (TTR), a homotetrameric protein found in plasma, cerebrospinal fluid, and the eye, plays a pivotal role in the onset of several amyloid diseases with high morbidity and mortality. Protein aggregation and fibril formation by wild-type TTR and its natural more amyloidogenic variants are hallmarks of ATTRwt and ATTRv amyloidosis, respectively. The formation of soluble amyloid aggregates and the accumulation of insoluble amyloid fibrils and deposits in multiple tissues can lead to organ dysfunction and cell death. The most frequent manifestations of ATTR are polyneuropathies and cardiomyopathies. However, clinical manifestations such as carpal tunnel syndrome, leptomeningeal, and ocular amyloidosis, among several others may also occur. This review provides an up-to-date listing of all single amino-acid mutations in TTR known to date. Of approximately 220 single-point mutations, 93% are considered pathogenic. Aspartic acid is the residue mutated with the highest frequency, whereas tryptophan is highly conserved. "Hot spot" mutation regions are mainly assigned to β-strands B, C, and D. This manuscript also reviews the protein aggregation models that have been proposed for TTR amyloid fibril formation and the transient conformational states that convert native TTR into aggregation-prone molecular species. Finally, it compiles the various in vitro TTR aggregation protocols currently in use for research and drug development purposes. In short, this article reviews and discusses TTR mutagenesis and amyloidogenesis, and their implications in disease onset.
Collapse
Affiliation(s)
- Zaida L Almeida
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| | - Daniela C Vaz
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic Institute of Leiria, Leiria, Portugal
- LSRE-LCM - Leiria, Portugal & ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Porto, Portugal
| | - Rui M M Brito
- Chemistry Department and Coimbra Chemistry Centre - Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Olsen WP, Courtade G, Peña‐Díaz S, Nagaraj M, Sønderby TV, Mulder FAA, Malle MG, Otzen DE. CsgA gatekeeper residues control nucleation but not stability of functional amyloid. Protein Sci 2024; 33:e5178. [PMID: 39302107 PMCID: PMC11414021 DOI: 10.1002/pro.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Functional amyloids, beneficial to the organism producing them, are found throughout life, from bacteria to humans. While disease-related amyloids form by uncontrolled aggregation, the fibrillation of functional amyloid is regulated by complex cellular machinery and optimized sequences, including so-called gatekeeper residues such as Asp. However, the molecular basis for this regulation remains unclear. Here we investigate how the introduction of additional gatekeeper residues affects fibril formation and stability in the functional amyloid CsgA from E. coli. Step-wise introduction of additional Asp gatekeepers gradually eliminated fibrillation unless preformed fibrils were added, illustrating that gatekeepers mainly affect nucleus formation. Once formed, the mutant CsgA fibrils were just as stable as wild-type CsgA. HSQC NMR spectra confirmed that CsgA is intrinsically disordered, and that the introduction of gatekeeper residues does not alter this ensemble. NMR-based Dark-state Exchange Saturation Transfer (DEST) experiments on the different CsgA variants, however, show a decrease in transient interactions between monomeric states and the fibrils, highlighting a critical role for these interactions in the fibrillation process. We conclude that gatekeeper residues affect fibrillation kinetics without compromising structural integrity, making them useful and selective modulators of fibril properties.
Collapse
Affiliation(s)
- William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Sino‐Danish College (SDC)University of Chinese Academy of SciencesBeijingChina
| | - Gaston Courtade
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food ScienceNTNU Norwegian University of Science and TechnologyTrondheimNorway
| | - Samuel Peña‐Díaz
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | | | - Frans A. A. Mulder
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
- Institute of BiochemistryJohannes Kepler UniversityLinzAustria
- Department of ChemistryAarhus UniversityAarhus CDenmark
| | - Mette G. Malle
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
| |
Collapse
|
5
|
Ononugbo CM, Shimura Y, Yamano-Adachi N, Omasa T, Koga Y. Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein. J Biosci Bioeng 2024; 138:271-282. [PMID: 39074993 DOI: 10.1016/j.jbiosc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Collapse
Affiliation(s)
- Chukwuebuka M Ononugbo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusaku Shimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
| |
Collapse
|
6
|
Takács K, Varga B, Farkas V, Perczel A, Grolmusz V. Opening Amyloid-Windows to the secondary structure of proteins: The amyloidogenecity increases tenfold inside beta-sheets. Comput Biol Med 2024; 179:108863. [PMID: 39024903 DOI: 10.1016/j.compbiomed.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Methods from artificial intelligence (AI), in general, and machine learning, in particular, have kept conquering new territories in numerous areas of science. Most of the applications of these techniques are restricted to the classification of large data sets, but new scientific knowledge can seldom be inferred from these tools. Here we show that an AI-based amyloidogenecity predictor can strongly differentiate the border- and the internal hexamers of β-pleated sheets when screening all the Protein Data Bank-deposited homology-filtered protein structures. Our main result shows that more than 30% of internal hexamers of β sheets are predicted to be amyloidogenic, while just outside the border regions, only 3% are predicted as such. This result may elucidate a general protection mechanism of proteins against turning into amyloids: if the borders of β-sheets were amyloidogenic, then the whole β sheet could turn more easily into an insoluble amyloid-structure, characterized by periodically repeated parallel β-sheets. We also present that no analogous phenomenon exists on the borders of α-helices or randomly chosen subsequences of the studied protein structures.
Collapse
Affiliation(s)
- Kristóf Takács
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary.
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary.
| | - Viktor Farkas
- HUN-REN -ELTE Protein Modeling Research Group, H-1117 Budapest, Hungary.
| | - András Perczel
- HUN-REN -ELTE Protein Modeling Research Group, H-1117 Budapest, Hungary; Laboratory of Structural Chemistry and Biology, Eötvös University, H-1117, Budapest, Hungary.
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, H-1117 Budapest, Hungary; Uratim Ltd., H-1118 Budapest, Hungary.
| |
Collapse
|
7
|
Camacho RA, Machado AV, de Oliveira Mendonça F, Teixeira-Alves LR, Guimarães-Nobre CC, Mendonça-Reis E, da Silva PF, Cardim-Pires TR, Miranda-Alves L, Berto-Junior C. Unraveling DEHP influence on hemoglobin S polymerization in sickle cell disease: Ex vivo, in vitro and in silico analysis. Toxicol In Vitro 2024; 98:105832. [PMID: 38653437 DOI: 10.1016/j.tiv.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy, caused by a mutation at position 6 of the β-globin chain and patients are frequently exposed to several blood transfusions in order to maintain physiological function. Transfusion blood bags are composed of PVC and phthalates (as DEHP) are often introduced to the material in order to confer malleability. In this sense, DEHP can easily elute to the blood and cause harmful effects. This study aimed to unravel DEHP effect on SCD patient's hemoglobin function. We found that HbS polymerization using whole erythrocytes is decreased by DEHP in ex vivo experiments and this effect might be mediated by the DEHP-VAL6 interaction, evaluated in silico. Isolated HbS exhibited less polymerization at low DEHP concentrations and increased polymerization rate at higher concentration. When analyzing the propensity to aggregate, HbS is more inclined to aggregate when compared to HbA due to the residue 6 mutation. Circular dichroism showed characteristic hemoglobin peaks for oxygenated HbS that are lost when oxygen is sequestered, and DEHP at higher concentration mildly recovers a peak close to the second hemoglobin one. Finally, by transmission electron microscopy we demonstrated that high DEHP concentration increased polymer formation with a more organized structure. These findings show for the first-time the beneficial effect of low-dose DEHP on HbS polymerization.
Collapse
Affiliation(s)
- Rodrigo Abreu Camacho
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Aghata Vitoria Machado
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ Macaé, Brazil
| | - Fernanda de Oliveira Mendonça
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ Macaé, Brazil
| | - Lyzes Rosa Teixeira-Alves
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Camila Cristina Guimarães-Nobre
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ Macaé, Brazil
| | - Evelyn Mendonça-Reis
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Priscila Ferreira da Silva
- Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ Macaé, Instituto de Ciências Farmacêuticas, Av. Aluizio da Silva Gomes, 50- Novo Cavaleiros, Macaé, 27930-560 Rio de Janeiro, RJ, Brazil
| | | | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental- LEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Programa de Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Clemilson Berto-Junior
- Grupo de Pesquisa em Fisiologia Eritróide - GPFisEri, Universidade Federal do Rio de Janeiro, Campus Macaé, Brazil; Programa de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Instituto de Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ Macaé, Brazil.
| |
Collapse
|
8
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
9
|
Duran-Romaña R, Houben B, De Vleeschouwer M, Louros N, Wilson MP, Matthijs G, Schymkowitz J, Rousseau F. N-glycosylation as a eukaryotic protective mechanism against protein aggregation. SCIENCE ADVANCES 2024; 10:eadk8173. [PMID: 38295165 PMCID: PMC10830103 DOI: 10.1126/sciadv.adk8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
The tendency for proteins to form aggregates is an inherent part of every proteome and arises from the self-assembly of short protein segments called aggregation-prone regions (APRs). While posttranslational modifications (PTMs) have been implicated in modulating protein aggregation, their direct role in APRs remains poorly understood. In this study, we used a combination of proteome-wide computational analyses and biophysical techniques to investigate the potential involvement of PTMs in aggregation regulation. Our findings reveal that while most PTM types are disfavored near APRs, N-glycosylation is enriched and evolutionarily selected, especially in proteins prone to misfolding. Experimentally, we show that N-glycosylation inhibits the aggregation of peptides in vitro through steric hindrance. Moreover, mining existing proteomics data, we find that the loss of N-glycans at the flanks of APRs leads to specific protein aggregation in Neuro2a cells. Our findings indicate that, among its many molecular functions, N-glycosylation directly prevents protein aggregation in higher eukaryotes.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P. Wilson
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Gert Matthijs
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Yu HM, Du MH, Shu J, Deng YH, Xu ZM, Huang ZW, Zhang Z, Chen B, Braunstein P, Lang JP. Self-Assembly of Cluster-Mediated 3D Catenanes with Size-Specific Recognition Behavior. J Am Chem Soc 2023; 145:25103-25108. [PMID: 37938934 DOI: 10.1021/jacs.3c11398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Although interlocked three-dimensional molecules display unique properties associated with their spatial structures, their synthesis and study of their host-guest properties remain challenging. We report the formation of a novel [2]catenane, [Et4N]@[(Tp*WS3Cu3Cl)2(cis-bpype)3]2(OTf)5 ([Et4N][1](OTf)5), by self-assembly of the cluster node [Tp*WS3Cu3Cl]+ and the organic linker (Z)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene (cis-bpype). Single-crystal X-ray and NMR analyses established that [1]4+ is formed by the interpenetration of two cluster-organic cages. Unique cation-in-cation host-guest complexes were observed with this catenane. The crystalline, empty catenane was formed by taking advantage of the electrostatic repulsion-induced weak binding of the host. Encapsulation experiments also reveal that the empty catenane can adaptively encapsulate cations such as [Et4N]+ and [Pr4N]+ in the cross cavity but is unable to encapsulate [Bu4N]+ and [Me4N]+, although the size of the latter is compatible with that of the cavity. Theoretical calculations and volume analysis allow to unravel the ingenious role of catenane structures and the interplay between electrostatic repulsion and attractive noncovalent interactions for size-specific recognition behavior in host-guest systems involving species with similar electric charges.
Collapse
Affiliation(s)
- Hui-Min Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jie Shu
- Analysis and Testing Center, Suzhou 215123, Jiangsu, China
| | - Yun-Hu Deng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhi-Wen Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
12
|
Chatterjee S, Salimi A, Lee JY. Histidine tautomerism-mediated transthyretin amyloidogenesis: A molecular insight. Arch Biochem Biophys 2023; 742:109618. [PMID: 37172673 DOI: 10.1016/j.abb.2023.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Characterization of the conformational alterations involved in monomer misfolding is essential for elucidating the molecular basis of the initial stage of protein accumulation. Here, we report the first structural analyses of transthyretin (TTR) (26-57) fragments with two histidine tautomeric states (δ; Nδ1H and ε; Nε2H) using replica-exchange molecular dynamics (REMD) simulations. Explaining the organizational properties and misfolding procedure is challenging because the δ and ε configurations can occur in the free neutral state. REMD revealed that β-sheet generation is favored for the δδ (16.8%) and εδ (6.7%) tautomeric isomers, showing frequent main-chain contacts between the stable regions near the head (N-terminus) and central (middle) part compared to the εε (4.8%) and δε (2.8%) isomers. The presence of smaller and wider local energy minima may be related to the structural stability and toxicity of δδ/εδ and εε/δε. Histidines31 and 56 were the parts of regular (such as β-strand) and nonregular (such as coil) secondary structures within the highly toxic TTR isomer. For TTR amyloidosis, focusing on hazardous isomeric forms with high sheet contents may be a potent treatment strategy. Overall, our findings support the tautomerism concept and aid in our comprehension of the basic tautomeric actions of neutral histidine throughout the misfolding process.
Collapse
Affiliation(s)
- Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
13
|
Agosta F, Cozzini P. Hint approach on Transthyretin folding/unfolding mechanism comprehension. Comput Biol Med 2023; 155:106667. [PMID: 36805224 DOI: 10.1016/j.compbiomed.2023.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Non-covalent intramolecular interactions play a key role in the protein folding process. Aminoacidic mutations or changes in physiological conditions such as pH and/or temperature variations can compromise intramolecular stability generating misfolding or unfolding proteins with consequent impairment of functionality and the triggering of pathological states. The intramolecular HINT scoring function recently implemented and validated, is proposed as a rapid and sensitive method for the evaluation of different conformational states characterizing destabilization processes. In this work, the stability of Transthyretin, whose denaturation is related to amyloid fibril formation, is evaluated by generating multiple structural mutated models under different pH conditions in comparison with experimental data. These results suggest that the HINT scoring function can be used for an accurate and rapid evaluation and computational prediction of the effects of structural changes on any protein system.
Collapse
Affiliation(s)
- Federica Agosta
- Molecular Modeling Laboratory, Food and Drug Department, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Pietro Cozzini
- Molecular Modeling Laboratory, Food and Drug Department, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| |
Collapse
|
14
|
Duan G, Li Y, Ye M, Liu H, Wang N, Luo S. The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. Int J Mol Sci 2023; 24:ijms24043729. [PMID: 36835140 PMCID: PMC9960511 DOI: 10.3390/ijms24043729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested that many proteins associated with neurodegenerative diseases undergo liquid-liquid phase separation (LLPS) and subsequent liquid-to-solid phase transition before the formation of amyloid fibrils. Here, we demonstrate that electrostatic interactions mediate LLPS of TTR, followed by a liquid-solid phase transition, and eventually the formation of amyloid fibrils under a mildly acidic pH in vitro. Furthermore, pathogenic mutations (V30M, R34T, and K35T) of TTR and heparin promote the process of phase transition and facilitate the formation of fibrillar aggregates. In addition, S-cysteinylation, which is a kind of post-translational modification of TTR, reduces the kinetic stability of TTR and increases the propensity for aggregation, while another modification, S-sulfonation, stabilizes the TTR tetramer and reduces the aggregation rate. Once TTR was S-cysteinylated or S-sulfonated, they dramatically underwent the process of phase transition, providing a foundation for post-translational modifications that could modulate TTR LLPS in the context of pathological interactions. These novel findings reveal molecular insights into the mechanism of TTR from initial LLPS and subsequent liquid-to-solid phase transition to amyloid fibrils, providing a new dimension for ATTR therapy.
Collapse
|
15
|
Peptides derived from gp43, the most antigenic protein from Paracoccidioides brasiliensis, form amyloid fibrils in vitro: implications for vaccine development. Sci Rep 2021; 11:23440. [PMID: 34873233 PMCID: PMC8648789 DOI: 10.1038/s41598-021-02898-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Fungal infection is an important health problem in Latin America, and in Brazil in particular. Paracoccidioides (mainly P. brasiliensis and P. lutzii) is responsible for paracoccidioidomycosis, a disease that affects mainly the lungs. The glycoprotein gp43 is involved in fungi adhesion to epithelial cells, which makes this protein an interesting target of study. A specific stretch of 15 amino acids that spans the region 181–195 (named P10) of gp43 is an important epitope of gp43 that is being envisioned as a vaccine candidate. Here we show that synthetic P10 forms typical amyloid aggregates in solution in very short times, a property that could hamper vaccine development. Seeds obtained by fragmentation of P10 fibrils were able to induce the aggregation of P4, but not P23, two other peptides derived from gp43. In silico analysis revealed several regions within the P10 sequence that can form amyloid with steric zipper architecture. Besides, in-silico proteolysis studies with gp43 revealed that aggregation-prone, P10-like peptides could be generated by several proteases, which suggests that P10 could be formed under physiological conditions. Considering our data in the context of a potential vaccine development, we redesigned the sequence of P10, maintaining the antigenic region (HTLAIR), but drastically reducing its aggregation propensity.
Collapse
|
16
|
Pras A, Houben B, Aprile FA, Seinstra R, Gallardo R, Janssen L, Hogewerf W, Gallrein C, De Vleeschouwer M, Mata‐Cabana A, Koopman M, Stroo E, de Vries M, Louise Edwards S, Kirstein J, Vendruscolo M, Falsone SF, Rousseau F, Schymkowitz J, Nollen EAA. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J 2021; 40:e107568. [PMID: 34617299 PMCID: PMC8561633 DOI: 10.15252/embj.2020107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.
Collapse
Affiliation(s)
- Anita Pras
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Bert Houben
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Francesco A Aprile
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Present address:
Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonUK
| | - Renée Seinstra
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Rodrigo Gallardo
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Present address:
Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Leen Janssen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Wytse Hogewerf
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Christian Gallrein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| | - Matthias De Vleeschouwer
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Alejandro Mata‐Cabana
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Esther Stroo
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Minke de Vries
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Samantha Louise Edwards
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Janine Kirstein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
- Faculty of Biology & ChemistryUniversity of BremenBremenGermany
| | - Michele Vendruscolo
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | | | - Frederic Rousseau
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Joost Schymkowitz
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Ellen A A Nollen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
17
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
18
|
In Vitro and In Vivo Effects of SerpinA1 on the Modulation of Transthyretin Proteolysis. Int J Mol Sci 2021; 22:ijms22179488. [PMID: 34502397 PMCID: PMC8430710 DOI: 10.3390/ijms22179488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
Transthyretin (TTR) proteolysis has been recognized as a complementary mechanism contributing to transthyretin-related amyloidosis (ATTR amyloidosis). Accordingly, amyloid deposits can be composed mainly of full-length TTR or contain a mixture of both cleaved and full-length TTR, particularly in the heart. The fragmentation pattern at Lys48 suggests the involvement of a serine protease, such as plasmin. The most common TTR variant, TTR V30M, is susceptible to plasmin-mediated proteolysis, and the presence of TTR fragments facilitates TTR amyloidogenesis. Recent studies revealed that the serine protease inhibitor, SerpinA1, was differentially expressed in hepatocyte-like cells (HLCs) from ATTR patients. In this work, we evaluated the effects of SerpinA1 on in vitro and in vivo modulation of TTR V30M proteolysis, aggregation, and deposition. We found that plasmin-mediated TTR proteolysis and aggregation are partially inhibited by SerpinA1. Furthermore, in vivo downregulation of SerpinA1 increased TTR levels in mice plasma and deposition in the cardiac tissue of older animals. The presence of TTR fragments was observed in the heart of young and old mice but not in other tissues following SerpinA1 knockdown. Increased proteolytic activity, particularly plasmin activity, was detected in mice plasmas. Overall, our results indicate that SerpinA1 modulates TTR proteolysis and aggregation in vitro and in vivo.
Collapse
|
19
|
Esperante SA, Varejāo N, Pinheiro F, Sant'Anna R, Luque-Ortega JR, Alfonso C, Sora V, Papaleo E, Rivas G, Reverter D, Ventura S. Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation. J Biol Chem 2021; 297:101039. [PMID: 34343569 PMCID: PMC8406001 DOI: 10.1016/j.jbc.2021.101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Nathalia Varejāo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Germán Rivas
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
20
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer's disease [Tau, Amyloid β (Aβ)], Parkinson's disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered "fuzzy coat" around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J 2020; 39:e102864. [PMID: 32237079 PMCID: PMC7265246 DOI: 10.15252/embj.2019102864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Many chaperones favour binding to hydrophobic sequences that are flanked by basic residues while disfavouring acidic residues. However, the origin of this bias in protein quality control remains poorly understood. Here, we show that while acidic residues are the most efficient aggregation inhibitors, they are also less compatible with globular protein structure than basic amino acids. As a result, while acidic residues allow for chaperone-independent control of aggregation, their use is structurally limited. Conversely, we find that, while being more compatible with globular structure, basic residues are not sufficient to autonomously suppress protein aggregation. Using Hsp70, we show that chaperones with a bias towards basic residues are structurally adapted to prioritize aggregating sequences whose structural context forced the use of the less effective basic residues. The hypothesis that emerges from our analysis is that the bias of many chaperones for basic residues results from fundamental thermodynamic and kinetic constraints of globular structure. This also suggests the co-evolution of basic residues and chaperones allowed for an expansion of structural variety in the protein universe.
Collapse
Affiliation(s)
- Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joffré Verniers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nuno Chicória
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Thomas Vanpoucke
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
22
|
Fong VH, Wong S, Jintaridhi P, Vieira A. Transport of the Thyroid Hormone Carrier Protein Transthyretin into Human Epidermoid Cells. Endocr Res 2020; 45:131-136. [PMID: 31762320 DOI: 10.1080/07435800.2019.1694538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Transthyretin (TTR) is a protein with a growing number of biological functions in addition to its well-established binding and circulatory transport of thyroxine, and indirect retinoid transport through interaction with retinol-binding protein. Misfolded and aggregated wild-type and mutant TTRs are involved in amyloid diseases. Several aspects of TTR pathology and physiology remain poorly understood. Receptor-mediated cellular transport of TTR has been described in a few cell types; and such studies suggest the possibility of different TTR receptors and endocytic pathways. Our main objective was to further understand the endocytic pathways for TTR.Methods: In the current study, analyses of TTR endocytic transport were performed in the human A431 cell line. The results of TTR uptake were compared with those of the iron-carrier protein transferrin (Tf, a common stardard for endocytosis studies) in the same cell types.Results: A comparison of TTR and Tf endocytosis suggested similar early, 5-10 min, accumulation kinetics. But at a later time, 30 min, TTR accumulation was 20-30% lower than that of Tf (p < .05), a result that suggests different post-endocytic fates for these two ligands. Through the use of multiple endocytosis inhibitors, biochemical evidence is provided for an internalization pathway that differs from the clathrin-mediated endocytosis of Tf.Conclusions: These results for A431 cells are compared with others reported for different cell types; and it is suggested that this same hormone carrier protein can transit into cells through multiple endocytic pathways.
Collapse
Affiliation(s)
- Vai Hong Fong
- Biomedical Physiology BPK, Simon Fraser University, Burnaby, BC, Canada
- Department of Neurology, Far Eastern Memorial University Hospital, New Taipei City, Taiwan
| | - Shaun Wong
- Biomedical Physiology BPK, Simon Fraser University, Burnaby, BC, Canada
| | | | - Amandio Vieira
- Biomedical Physiology BPK, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
23
|
Salomón T, Sibbersen C, Hansen J, Britz D, Svart MV, Voss TS, Møller N, Gregersen N, Jørgensen KA, Palmfeldt J, Poulsen TB, Johannsen M. Ketone Body Acetoacetate Buffers Methylglyoxal via a Non-enzymatic Conversion during Diabetic and Dietary Ketosis. Cell Chem Biol 2017; 24:935-943.e7. [PMID: 28820963 DOI: 10.1016/j.chembiol.2017.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/12/2017] [Accepted: 07/25/2017] [Indexed: 12/18/2022]
Abstract
The α-oxoaldehyde methylglyoxal is a ubiquitous and highly reactive metabolite known to be involved in aging- and diabetes-related diseases. If not detoxified by the endogenous glyoxalase system, it exerts its detrimental effects primarily by reacting with biopolymers such as DNA and proteins. We now demonstrate that during ketosis, another metabolic route is operative via direct non-enzymatic aldol reaction between methylglyoxal and the ketone body acetoacetate, leading to 3-hydroxyhexane-2,5-dione. This novel metabolite is present at a concentration of 10%-20% of the methylglyoxal level in the blood of insulin-starved patients. By employing a metabolite-alkyne-tagging strategy it is clarified that 3-hydroxyhexane-2,5-dione is further metabolized to non-glycating species in human blood. The discovery represents a new direction within non-enzymatic metabolism and within the use of alkyne-tagging for metabolism studies and it revitalizes acetoacetate as a competent endogenous carbon nucleophile.
Collapse
Affiliation(s)
- Trine Salomón
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| | | | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Dieter Britz
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Mads Vandsted Svart
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Thomas Schmidt Voss
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Niels Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Niels Gregersen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark.
| |
Collapse
|
24
|
Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clin Sci (Lond) 2017; 131:395-409. [PMID: 28213611 DOI: 10.1042/cs20160413] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
Transthyretin (TTR) amyloidosis (ATTR amyloidosis) is an underdiagnosed and important type of cardiomyopathy and/or polyneuropathy that requires increased awareness within the medical community. Raising awareness among clinicians about this type of neuropathy and lethal form of heart disease is critical for improving earlier diagnosis and the identification of patients for treatment. The following review summarizes current criteria used to diagnose both hereditary and wild-type ATTR (ATTRwt) amyloidosis, tools available to clinicians to improve diagnostic accuracy, available and newly developing therapeutics, as well as a brief biochemical and biophysical background of TTR amyloidogenesis.
Collapse
|
25
|
Tracking the amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy. J Struct Biol 2017; 199:140-152. [PMID: 28602716 DOI: 10.1016/j.jsb.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/19/2017] [Accepted: 06/03/2017] [Indexed: 12/14/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is the major protein component of extracellular amyloid deposits, located in the islets of Langerhans, a hallmark of type II diabetes. The underlying mechanisms of IAPP aggregation have not yet been clearly defined, although the highly amyloidogenic sequence of the protein has been extensively studied. Several segments have been highlighted as aggregation-prone regions (APRs), with much attention focused on the central 8-17 and 20-29 stretches. In this work, we employ micro-Raman spectroscopy to identify specific regions that are contributing to or are excluded from the amyloidogenic core of IAPP amyloid fibrils. Our results demonstrate that both the N-terminal region containing a conserved disulfide bond between Cys residues at positions 2 and 7, and the C-terminal region containing the only Tyr residue are excluded from the amyloid core. Finally, by performing detailed aggregation assays and molecular dynamics simulations on a number of IAPP variants, we demonstrate that point mutations within the central APRs contribute to the reduction of the overall amyloidogenic potential of the protein but do not completely abolish the formation of IAPP amyloid fibrils.
Collapse
|
26
|
Pires RH, Saraiva MJ, Damas AM, Kellermayer MSZ. Force spectroscopy reveals the presence of structurally modified dimers in transthyretin amyloid annular oligomers. J Mol Recognit 2016; 30. [PMID: 27808434 DOI: 10.1002/jmr.2587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amyloid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegenerative amyloidogenic disorders. Manipulation was performed in situ, in the absence of molecular handles and using persistence length-fit values to select relevant curves. Force curves reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural intermediates. This is in contrast with the manipulation of native TTR that was more often manipulated over length scales compatible with a TTR monomer and without unfolding intermediates. Imaging and force spectroscopy data suggest that dimers are formed by the assembly of monomers in a head-to-head orientation with a nonnative interface along their β-strands. Furthermore, these dimers stack through nonnative contacts that may enhance the stability of the misfolded structure.
Collapse
Affiliation(s)
- Ricardo H Pires
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Institute for Molecular and Cell Biology (IBMC), Porto, Portugal
| | - Maria J Saraiva
- Institute for Molecular and Cell Biology (IBMC), Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana M Damas
- Institute for Molecular and Cell Biology (IBMC), Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,MTA-SE Molecular Biophysics Research Group, Budapest, Hungary
| |
Collapse
|
27
|
Bemporad F, Ramazzotti M. From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:1-47. [PMID: 28109326 DOI: 10.1016/bs.ircmb.2016.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding of polypeptide chains into biologically active entities is an astonishingly complex process, determined by the nature and the sequence of residues emerging from ribosomes. While it has been long believed that evolution has pressed genomes so that specific sequences could adopt unique, functional three-dimensional folds, it is now clear that complex protein machineries act as quality control system and supervise folding. Notwithstanding that, events such as erroneous folding, partial folding, or misfolding are frequent during the life of a cell or a whole organism, and they can escape controls. One of the possible outcomes of this misbehavior is cross-β aggregation, a super secondary structure which represents the hallmark of self-assembled, well organized, and extremely ordered structures termed amyloid fibrils. What if evolution would have not taken into account such possibilities? Twenty years of research point toward the idea that, in fact, evolution has constantly supervised the risk of errors and minimized their impact. In this review we tried to survey the major findings in the amyloid field, trying to describe what the real pitfalls of protein folding are-from an evolutionary perspective-and how sequence and structural features have evolved to balance the need for perfect, dynamic, functionally efficient structures, and the detrimental effects implicit in the dangerous process of folding. We will discuss how the knowledge obtained from these studies has been employed to produce computational methods able to assess, predict, and discriminate the aggregation properties of protein sequences.
Collapse
Affiliation(s)
- F Bemporad
- Università degli Studi di Firenze, Firenze, Italy.
| | - M Ramazzotti
- Università degli Studi di Firenze, Firenze, Italy.
| |
Collapse
|
28
|
Garnett GAE, Daze KD, Peña Diaz JA, Fagen N, Shaurya A, Ma MCF, Collins MS, Johnson DW, Zakharov LN, Hof F. Attraction by repulsion: compounds with like charges undergo self-assembly in water that improves in high salt and persists in real biological fluids. Chem Commun (Camb) 2016; 52:2768-71. [PMID: 26762538 DOI: 10.1039/c5cc10527g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a family of highly anionic calixarenes that form discrete homo-dimeric assemblies in pure water, that get stronger in high salt solutions, and that remain assembled in complex, denaturing solutions like real urine. The results reveal the potential of like-charged subunits for self-assembly in high-salt solutions and biological fluids.
Collapse
Affiliation(s)
- Graham A E Garnett
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Kevin D Daze
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Jorge A Peña Diaz
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Noah Fagen
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Alok Shaurya
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Manuel C F Ma
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| | - Mary S Collins
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, USA
| | - Darren W Johnson
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, USA
| | - Lev N Zakharov
- Center for Advanced Materials Characterization in Oregon (CAMCOR), 1241 University of Oregon, Eugene, OR 97403-1241, USA
| | - Fraser Hof
- Department of Chemistry, University of Victoria, PO Box 3065, STN CSC, Victoria, V8W 3V6, Canada.
| |
Collapse
|
29
|
Mikawa S, Mizuguchi C, Nishitsuji K, Baba T, Shigenaga A, Shimanouchi T, Sakashita N, Otaka A, Akaji K, Saito H. Heparin promotes fibril formation by the N-terminal fragment of amyloidogenic apolipoprotein A-I. FEBS Lett 2016; 590:3492-3500. [DOI: 10.1002/1873-3468.12426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shiho Mikawa
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Chiharu Mizuguchi
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Teruhiko Baba
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Japan
| | - Akira Shigenaga
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | | | - Naomi Sakashita
- Department of Molecular Pathology; Institute of Biomedical Sciences; Tokushima University Graduate School; Japan
| | - Akira Otaka
- Institute of Biomedical Sciences; Graduate School of Pharmaceutical Sciences; Tokushima University; Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry; Kyoto Pharmaceutical University; Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry; Kyoto Pharmaceutical University; Japan
| |
Collapse
|
30
|
Influence of the Aqueous Environment on Protein Structure—A Plausible Hypothesis Concerning the Mechanism of Amyloidogenesis. ENTROPY 2016. [DOI: 10.3390/e18100351] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Sant'Anna R, Navarro S, Ventura S, Paraoan L, Foguel D. Amyloid properties of the leader peptide of variant B cystatin C: implications for Alzheimer and macular degeneration. FEBS Lett 2016; 590:644-54. [PMID: 26865059 DOI: 10.1002/1873-3468.12093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
Variant B (VB) of cystatin C has a mutation in its signal peptide (A25T), which interferes with its processing leading to reduced secretion and partial retention in the vicinity of the mitochondria. There are genetic evidences of the association of VB with Alzheimer's disease (AD) and age-related macular degeneration (AMD). Here, we investigated aggregation and amyloid propensities of unprocessed VB combining computational and in vitro studies. Aggregation predictors revealed the presence of four aggregation-prone regions, with a strong one at the level of the signal peptide, which indeed formed toxic aggregates and mature amyloid fibrils in solution. In light of these results, we propose for the first time the role of the signal peptide in pathogenesis of AD and AMD.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Pal S, Maity S, Sardar S, Chakraborty J, Halder UC. Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin. Int J Biol Macromol 2015; 84:121-34. [PMID: 26657584 DOI: 10.1016/j.ijbiomac.2015.11.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 09/05/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
Abstract
Many proteins form ordered irreversible aggregates called amyloid fibrils which are responsible for several neurodegenerative diseases. β-lactoglobulin (β-lg), an important globular milk protein, self-assembles to form amyloid-like fibrils on heating at low pH. The present study investigated the effects of two commonly used organic solvents acetonitrile (MeCN) and antimicrobial preservative benzyl alcohol (BA) on the conformation and self-assembly of β-lg at ambient condition. Both MeCN and BA induced a concentration-dependent conformational change showing exposure of hydrophobic patches, loss of tertiary structure and higher α-helical structure at moderate concentrations. In the presence of 50-80% (v/v) MeCN and 1.5-3% (v/v) BA further structural transitions from α-helical to non-native β-sheet structure were observed with a molten globule-like intermediate at 70% MeCN. These non-native β-sheet structures have high tendency to form aggregates. The formation of β-lg self-assembly was confirmed by Thioflavin T studies, Congo red assay, Rayleigh scattering and dynamic light scattering analysis. Transmission electron microscopy studies showed amyloid fibril formation in both MeCN and BA. Our results showed that BA enhances the unfolding and self-assembly of β-lg at much lower concentration than MeCN. Thus solvent composition forces the protein to achieve the non-native structures which are responsible for protein aggregation.
Collapse
Affiliation(s)
- Sampa Pal
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Sanhita Maity
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Subrata Sardar
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Jishnu Chakraborty
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Umesh Chandra Halder
- Organic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
33
|
Martínez J, Sánchez R, Castellanos M, Makarava N, Aguzzi A, Baskakov IV, Gasset M. PrP charge structure encodes interdomain interactions. Sci Rep 2015; 5:13623. [PMID: 26323476 PMCID: PMC4555102 DOI: 10.1038/srep13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.
Collapse
Affiliation(s)
- Javier Martínez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Rosa Sánchez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Milagros Castellanos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; IMDEA-Nanociencia, Madrid 28049, Spain
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich 8091, Switzerland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - María Gasset
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| |
Collapse
|