1
|
Chen C, Zheng Y, Gao T, Chen M, Dong K, Shen L, Bai Y, Zhang L. Structure and function of the uracil DNA glycosylases from hyperthermophiles: Elucidating DNA uracil repair mechanisms: A review. Int J Biol Macromol 2025; 299:140137. [PMID: 39842587 DOI: 10.1016/j.ijbiomac.2025.140137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Base deamination can lead to DNA base damage, among which cytosine deamination to uracil occurs frequently. Before repair, replication of uracil in DNA will generate GC → AT transversion mutation. Since base deamination is accelerated by high temperature, genomic DNA stability of hyperthermophiles, which grow optimally above 75 °C, is facing a severe threat by the elevated base deamination created by their living high temperature environments. To counteract its potentially harmful effect, cells have employed several pathways for DNA uracil repair, among which base excision repair (BER) is one of major pathways. Uracil DNA glycosylase (UDG) is the first enzyme that initiates BER by excising uracil from DNA. Based on their sequence similarities, UDGs have been divided into six families, among which families IV and V members are predominantly found in hyperthermophiles. Besides, two novel UDGs have been reported from hyperthermophiles. Generally, UDGs from hyperthermophiles exhibit biochemical and structural characteristics distinct from other family UDG members, thereby enriching functional diversity of UDGs. Herein, we have reviewed structure and function of UDGs from hyperthermophiles to provide insights into DNA uracil repair mechanisms, focusing on difference between UDGs from various hyperthermophiles, and difference between archaeal UDGs and bacterial homologs.
Collapse
Affiliation(s)
- Cai Chen
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Yaqi Zheng
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Tian Gao
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Li Shen
- The Key Laboratory of the Jiangsu Higher Education Institutions for Integrated Traditional Chinese, Western Medicine in Senile Diseases Control, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, PR China.
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, China.
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, China.
| |
Collapse
|
2
|
Liang C, Yang Y, Ning P, Chang C, Cao W. Structural and functional coupling in cross-linking uracil-DNA glycosylase UDGX. Biosci Rep 2024; 44:BSR20231551. [PMID: 38059429 PMCID: PMC10776899 DOI: 10.1042/bsr20231551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Enzymes in uracil-DNA glycosylase (UDG) superfamily are involved in removal of deaminated nucleobases such as uracil, methylcytosine derivatives such as formylcytosine and carboxylcytosine, and other base damage in DNA repair. UDGX is the latest addition of a new class to the UDG superfamily with a sporadic distribution in bacteria. UDGX type enzymes have a distinct biochemical property of cross-linking itself to the resulting AP site after uracil removal. Built on previous biochemical and structural analyses, this work comprehensively investigated the kinetic and enzymatic properties of Mycobacterium smegmatis UDGX. Kinetics and mutational analyses, coupled with structural information, defined the roles of E52, D56, D59, F65 of motif 1, H178 of motif 2 and N91, K94, R107 and H109 of motif 3 play in uracil excision and cross-linking. More importantly, a series of quantitative analyses underscored the structural coupling through inter-motif and intra-motif interactions and subsequent functional coupling of the uracil excision and cross-linking reactions. A catalytic model is proposed, which underlies this catalytic feature unique to UDGX type enzymes. This study offers new insight on the catalytic mechanism of UDGX and provides a unique example of enzyme evolution.
Collapse
Affiliation(s)
- Chuan Liang
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, U.S.A
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, U.S.A
| | - Ping Ning
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, U.S.A
| | - Chenyan Chang
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, U.S.A
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Room 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, U.S.A
| |
Collapse
|
3
|
Hijikata A, Oshima T, Yura K, Bessho Y. ThermusQ: Toward the cell simulation platform for Thermus thermophilus. J GEN APPL MICROBIOL 2023; 69:59-67. [PMID: 37460312 DOI: 10.2323/jgam.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
ThermusQ is a website (https://www.thermusq.net/) that aims to gather all the molecular information on Thermus thermophilus and to provide a platform to easily access the whole view of the bacterium. ThermusQ comprises the genome sequences of 22 strains from T. thermophilus and T. oshimai strains, plus the sequences of known Thermus phages. ThermusQ also contains information and map diagrams of pathways unique to Thermus strains. The website provides tools to retrieve sequence data in different ways. By gathering the whole data of T. thermophilus strains, the strainspecific characteristics was found. This bird's-eye view of the whole data will lead the research community to identify missing important data and the integration will provide a platform to conduct future biochemical simulations of the bacterium.
Collapse
Affiliation(s)
- Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences
| | - Tairo Oshima
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- Graduate School of Advanced Science and Engineering, Waseda University
| | - Yoshitaka Bessho
- Center for Interdisciplinary AI and Data Science, Ochanomizu University
- RIKEN SPring-8 Center, Harima Institute
| |
Collapse
|
4
|
Biochemical and mutational studies of an endonuclease V from the hyperthermophilic crenarchaeon Sulfolobus islandicus REY15A. World J Microbiol Biotechnol 2023; 39:90. [PMID: 36752840 DOI: 10.1007/s11274-023-03526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.
Collapse
|
5
|
Li J, Yang Y, Chang C, Cao W. DR0022 from Deinococcus radiodurans is an acid uracil-DNA glycosylase. FEBS J 2022; 289:6420-6434. [PMID: 35607831 PMCID: PMC9796141 DOI: 10.1111/febs.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023]
Abstract
Uracil-DNA glycosylase (UDG) initiates base excision repair (BER) by removing damaged or modified nucleobases during DNA repair or mammalian demethylation. The UDG superfamily consists of at least six families with a variety of catalytic specificities and functions. Deinococcus radiodurans, an extreme radiation resistant bacterium, contains multiple members of UDG enzymes within its genome. The present study reveals that the putative protein, DR0022, is a uracil-DNA glycosylase that requires acidic conditions for its glycosylase activity, which is the first case of such an enzyme within the UDG superfamily. The key residues in the catalytic motifs are investigated by biochemical, enzyme kinetics, and de novo structural prediction, as well as molecular modeling analyses. The structural and catalytic roles of several distinct residues are discussed in light of predicted and modeled DR0022 glycosylase structures. The spontaneous mutation rate analysis performed in a dr0022 deficient D. radiodurans strain indicated that the dr0022 gene plays a role in mutation prevention. Furthermore, survival rate analysis in a dr0022 deficient D. radiodurans strain demonstrated its role in stress resistance, including γ-irradiation. Additionally, the novel acid UDG activity in relationship to its in vivo roles is discussed. This work underscores the functional diversity in the UDG superfamily.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ye Yang
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Chenyan Chang
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Weiguo Cao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
6
|
A novel Family V uracil DNA glycosylase from Sulfolobus islandicus REY15A. DNA Repair (Amst) 2022; 120:103420. [DOI: 10.1016/j.dnarep.2022.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
|
7
|
Screening of glycosylase activity on oxidative derivatives of methylcytosine: Pedobacter heparinus SMUG2 as a formylcytosine- and carboxylcytosine-DNA glycosylase. DNA Repair (Amst) 2022; 119:103408. [PMID: 36179537 DOI: 10.1016/j.dnarep.2022.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
Abstract
5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.
Collapse
|
8
|
Lin T, Zhang L, Wu M, Jiang D, Li Z, Yang Z. Repair of Hypoxanthine in DNA Revealed by DNA Glycosylases and Endonucleases From Hyperthermophilic Archaea. Front Microbiol 2021; 12:736915. [PMID: 34531846 PMCID: PMC8438529 DOI: 10.3389/fmicb.2021.736915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Since hyperthermophilic Archaea (HA) thrive in high-temperature environments, which accelerate the rates of deamination of base in DNA, their genomic stability is facing a severe challenge. Hypoxanthine (Hx) is one of the common deaminated bases in DNA. Generally, replication of Hx in DNA before repaired causes AT → GC mutation. Biochemical data have demonstrated that 3-methyladenine DNA glycosylase II (AlkA) and Family V uracil DNA glycosylase (UDG) from HA could excise Hx from DNA, thus triggering a base excision repair (BER) process for Hx repair. Besides, three endonucleases have been reported from HA: Endonuclease V (EndoV), Endonuclease Q (EndoQ), and Endonuclease NucS (EndoNucS), capable of cleaving Hx-containing DNA, thereby providing alternative pathways for Hx repair. Both EndoV and EndoQ could cleave one DNA strand with Hx, thus forming a nick and further initiating an alternative excision repair (AER) process for the follow-up repair. By comparison, EndoNucS cleaves both strands of Hx-containing DNA in a restriction endonuclease manner, thus producing a double-stranded break (DSB). This created DSB might be repaired by homologous recombination (HR) or by a combination activity of DNA polymerase (DNA pol), flap endonuclease 1 (FEN1), and DNA ligase (DNA lig). Herein, we reviewed the most recent advances in repair of Hx in DNA triggered by DNA glycosylases and endonucleases from HA, and proposed future research directions.
Collapse
Affiliation(s)
- Tan Lin
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China.,Guangling College, Yangzhou University, Yangzhou, China
| | - Mai Wu
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science and Technology Institute, Yangzhou University, Yangzhou, China
| | - Zheng Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
9
|
Evolutionary Origins of DNA Repair Pathways: Role of Oxygen Catastrophe in the Emergence of DNA Glycosylases. Cells 2021; 10:cells10071591. [PMID: 34202661 PMCID: PMC8307549 DOI: 10.3390/cells10071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022] Open
Abstract
It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.
Collapse
|
10
|
Gan Q, He M, Shi H, Yang Z, Oger P, Ran L, Zhang L. Characterization of a Family IV uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2020; 146:475-481. [DOI: 10.1016/j.ijbiomac.2019.12.202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
11
|
Palafox MA, Chalanchi SM, Isasi J, Premkumar R, Franklin Benial AM, Rastogi VK. Effect of bromine atom on the different tautomeric forms of microhydrated 5-bromouracil, in the DNA:RNA microhelix and in the interaction with human proteins. J Biomol Struct Dyn 2020; 38:5443-5463. [DOI: 10.1080/07391102.2019.1704878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M. Alcolea Palafox
- Facultad de Ciencias Químicas, Departamento de Química-Fisica, Universidad Complutense de Madrid, Madrid, Spain
| | - S. M. Chalanchi
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - J. Isasi
- Facultad de Ciencias Químicas, Departamento de Química Inorgánica, Universidad Complutense de Madrid, Madrid, Spain
| | - R. Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
| | | | | |
Collapse
|
12
|
Shi H, Gan Q, Jiang D, Wu Y, Yin Y, Hou H, Chen H, Xu Y, Miao L, Yang Z, Oger P, Zhang L. Biochemical characterization and mutational studies of a thermostable uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 2019; 134:846-855. [DOI: 10.1016/j.ijbiomac.2019.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 01/24/2023]
|
13
|
Tu J, Chen R, Yang Y, Cao W, Xie W. Suicide inactivation of the uracil DNA glycosylase UdgX by covalent complex formation. Nat Chem Biol 2019; 15:615-622. [PMID: 31101915 DOI: 10.1038/s41589-019-0290-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
A uracil DNA glycosylase (UDG) from Mycobacterium smegmatis (MsmUdgX) shares sequence similarity with family 4 UDGs and forms exceedingly stable complexes with single-stranded uracil-containing DNAs (ssDNA-Us) that are resistant to denaturants. However, MsmUdgX has been reported to be inactive in excising uracil from ssDNA-Us and the underlying structural basis is unclear. Here, we report high-resolution crystal structures of MsmUdgX in the free, uracil- and DNA-bound forms, respectively. The structural information, supported by mutational and biochemical analyses, indicates that the conserved residue His109 located on a characteristic loop forms an irreversible covalent linkage with the deoxyribose at the apyrimidinic site of ssDNA-U, thus rendering the enzyme unable to regenerate. By proposing the catalytic pathway and molecular mechanism for MsmUdgX, our studies provide an insight into family 4 UDGs and UDGs in general.
Collapse
Affiliation(s)
- Jie Tu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Togawa Y, Shiotani S, Kato Y, Ezaki K, Nunoshiba T, Hiratsu K. Development of a supF-based mutation-detection system in the extreme thermophile Thermus thermophilus HB27. Mol Genet Genomics 2019; 294:1085-1093. [PMID: 30968247 DOI: 10.1007/s00438-019-01565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/03/2019] [Indexed: 01/07/2023]
Abstract
Thermus thermophilus (T. thermophilus) HB27 is an extreme thermophile that grows optimally at 65-72 °C. Heat-induced DNA lesions are expected to occur at a higher frequency in the genome of T. thermophilus than in those of mesophiles; however, the mechanisms underlying the maintenance of genome integrity at high temperatures remain poorly understood. The study of mutation spectra has become a powerful approach to understanding the molecular mechanisms responsible for DNA repair and mutagenesis in mesophilic species. Therefore, we developed a supF-based system to detect a broad spectrum of mutations in T. thermophilus. This system was validated by measuring spontaneous mutations in the wild type and a udgA, B double mutant deficient in uracil-DNA glycosylase (UDG) activity. We found that the mutation frequency of the udgA, B strain was 4.7-fold higher than that of the wild type and G:C→A:T transitions dominated, which was the most reasonable for the mutator phenotype associated with the loss of UDG function in T. thermophilus. These results show that this system allowed for the rapid analysis of mutations in T. thermophilus, and may be useful for studying the molecular mechanisms responsible for DNA repair and mutagenesis in this extreme thermophile.
Collapse
Affiliation(s)
- Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Shiori Shiotani
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Yuki Kato
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Kazune Ezaki
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
15
|
Kanaan N, Imhof P. Interactions of the DNA Repair Enzyme Human Thymine DNA Glycosylase with Cognate and Noncognate DNA. Biochemistry 2018; 57:5654-5665. [PMID: 30067350 DOI: 10.1021/acs.biochem.8b00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycosylases specifically recognize and flip their target base out of the DNA helix into the enzyme's active site. Our simulations show that a partially flipped state, already present in free DNA carrying a T:G mispair, becomes the more probable state compared to the closed state after binding of thymine DNA glycosylase (TDG). Paired thymine (T:A) or methyl-cytosine (mC:G) does not exhibit a partially flipped state in free or complexed DNA. Important enzyme-DNA interactions exhibit significant strength in the intrahelical and extrahelical TDG-DNA complexes. The computed binding free energy differences suggest these interactions account for the stabilization of the partially flipped state, thereby driving the T:G mispair toward base flip. In the fully flipped state, the cognate base thymine is significantly better accommodated in the enzyme's active site than noncognate bases are, suggesting the hydrolysis step as the last of several stages at which base recognition can be achieved.
Collapse
Affiliation(s)
- Natalia Kanaan
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| | - Petra Imhof
- Institute of Theoretical Physics , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany
| |
Collapse
|
16
|
Li J, Yang Y, Guevara J, Wang L, Cao W. Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua. DNA Repair (Amst) 2017; 57:107-115. [PMID: 28719838 PMCID: PMC5568478 DOI: 10.1016/j.dnarep.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022]
Abstract
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Jose Guevara
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Room 060 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA.
| |
Collapse
|
17
|
Correlated Mutation in the Evolution of Catalysis in Uracil DNA Glycosylase Superfamily. Sci Rep 2017; 7:45978. [PMID: 28397787 PMCID: PMC5387724 DOI: 10.1038/srep45978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Enzymes in Uracil DNA glycosylase (UDG) superfamily are essential for the removal of uracil. Family 4 UDGa is a robust uracil DNA glycosylase that only acts on double-stranded and single-stranded uracil-containing DNA. Based on mutational, kinetic and modeling analyses, a catalytic mechanism involving leaving group stabilization by H155 in motif 2 and water coordination by N89 in motif 3 is proposed. Mutual Information analysis identifies a complexed correlated mutation network including a strong correlation in the EG doublet in motif 1 of family 4 UDGa and in the QD doublet in motif 1 of family 1 UNG. Conversion of EG doublet in family 4 Thermus thermophilus UDGa to QD doublet increases the catalytic efficiency by over one hundred-fold and seventeen-fold over the E41Q and G42D single mutation, respectively, rectifying the strong correlation in the doublet. Molecular dynamics simulations suggest that the correlated mutations in the doublet in motif 1 position the catalytic H155 in motif 2 to stabilize the leaving uracilate anion. The integrated approach has important implications in studying enzyme evolution and protein structure and function.
Collapse
|
18
|
SMUG2 DNA glycosylase from Pedobacter heparinus as a new subfamily of the UDG superfamily. Biochem J 2017; 474:923-938. [PMID: 28049757 DOI: 10.1042/bcj20160934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are essential to maintain genome integrity, in which the base excision repair (BER) pathway plays a major role in the removal of base damage. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for excising the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Using bioinformatics tools, we identified a family 3 SMUG1-like DNA glycoyslase from Pedobacter heparinus (named Phe SMUG2), which displays catalytic activities towards DNA containing uracil or hypoxanthine/xanthine. Phylogenetic analyses show that SMUG2 enzymes are closely related to family 3 SMUG1s but belong to a distinct branch of the family. The high-resolution crystal structure of the apoenzyme reveals that the general fold of Phe SMUG2 resembles SMUG1s, yet with several distinct local structural differences. Mutational studies, coupled with structural modeling, identified several important amino acid residues for glycosylase activity. Substitution of G65 with a tyrosine results in loss of all glycosylase activity. The crystal structure of the G65Y mutant suggests a potential misalignment at the active site due to the mutation. The relationship between the new subfamily and other families in the UDG superfamily is discussed. The present study provides new mechanistic insight into the molecular mechanism of the UDG superfamily.
Collapse
|
19
|
Kucukkal TG, Yang Y, Uvarov O, Cao W, Alexov E. Impact of Rett Syndrome Mutations on MeCP2 MBD Stability. Biochemistry 2015; 54:6357-68. [PMID: 26418480 PMCID: PMC9871983 DOI: 10.1021/acs.biochem.5b00790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rett syndrome causing missense mutations in the methyl-CpG-binding domain (MBD) of methyl CpG-binding protein 2 (MeCP2) were investigated both in silico and in vitro to reveal their effect on protein stability. It is demonstrated that the vast majority of frequently occurring mutations in the human population indeed alter the MBD folding free energy by a fraction of a kcal/mol up to more than 1 kcal/mol. While the absolute magnitude of the change of the free energy is small, the effect on the MBD functionality may be substantial since the folding free energy of MBD is about 2 kcal/mol only. Thus, it is emphasized that the effect of mutations on protein integrity should be evaluated with respect to the wild-type folding free energy but not with the absolute value of the folding free energy change. Furthermore, it was observed that the magnitude of the effect is correlated neither with the burial of the mutation sites nor with the basic amino acid physicochemical property change. Mutations that strongly perturb the immediate structural features were found to have little effect on folding free energy, while very conservative mutations resulted in large changes of the MBD stability. This observation was attributed to the protein's ability to structurally relax and reorganize to reduce the effect of mutation. Comparison between in silico and in vitro results indicated that some Web servers perform relatively well, while the free energy perturbation approach frequently overpredicts the magnitude of the free energy change especially when a charged amino acid is involved.
Collapse
Affiliation(s)
- Tugba G Kucukkal
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Olga Uvarov
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, 049 Life Sciences Facility, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| | - Emil Alexov
- Department of Physics, Clemson University, 118 Kinard Laboratory, Clemson, SC 29634, USA,Weiguo Cao: , Tel: 864-656-4176; Fax: 864-656-6879, Alexov: , Tel: 864-908-4796, Fax: 864-656-0805
| |
Collapse
|
20
|
Kawai A, Higuchi S, Tsunoda M, Nakamura KT, Yamagata Y, Miyamoto S. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding. FEBS Lett 2015; 589:2675-82. [PMID: 26318717 DOI: 10.1016/j.febslet.2015.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/23/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding. The stoUDG-DNA complex model indicated that Leu169, Tyr170, and Asn171 in the loop are involved in DNA intercalation. Mutational analysis showed that Tyr170 is critical for substrate DNA recognition. These results indicate that Tyr170 occupies the intercalation site formed after the structural change of the leucine-intercalation loop required for the catalysis.
Collapse
Affiliation(s)
- Akito Kawai
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Shigesada Higuchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masaru Tsunoda
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai-iino, Iwaki 970-8551, Japan
| | - Kazuo T Nakamura
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuichi Miyamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
21
|
Mitochondrial DNA: Radically free of free-radical driven mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1354-61. [PMID: 26050972 DOI: 10.1016/j.bbabio.2015.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
Mitochondrial DNA has long been posited as a likely target of oxidative damage induced mutation during the ageing process. Research over the past decades has uncovered the accumulation of mitochondrial DNA mutations in association with a mosaic pattern of cells displaying mitochondrial dysfunction in ageing individuals. Unfortunately, the underlying mechanisms are far less straightforward than originally anticipated. Recent research on mitochondria reveals that these genomes are far less helpless than originally envisioned. Additionally, new technologies have allowed us to analyze the mutational signatures of many more somatic mitochondrial DNA mutations, revealing surprising patterns that are inconsistent with a DNA-oxidative damage based hypothesis. In this review, we will discuss these recent observations and new insights into the eccentricities of mitochondrial genetics, and their impact on our understanding of mitochondrial mutations and their role in the ageing process. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
|
22
|
Lee DH, Liu Y, Lee HW, Xia B, Brice AR, Park SH, Balduf H, Dominy BN, Cao W. A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs. Nucleic Acids Res 2014; 43:1081-9. [PMID: 25550433 PMCID: PMC4333384 DOI: 10.1093/nar/gku1332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The uracil DNA glycosylase superfamily consists of several distinct families. Family 2 mismatch-specific uracil DNA glycosylase (MUG) from Escherichia coli is known to exhibit glycosylase activity on three mismatched base pairs, T/U, G/U and C/U. Family 1 uracil N-glycosylase (UNG) from E. coli is an extremely efficient enzyme that can remove uracil from any uracil-containing base pairs including the A/U base pair. Here, we report the identification of an important structural determinant that underlies the functional difference between MUG and UNG. Substitution of a Lys residue at position 68 with Asn in MUG not only accelerates the removal of uracil from mismatched base pairs but also enables the enzyme to gain catalytic activity on A/U base pairs. Binding and kinetic analysis demonstrate that the MUG-K68N substitution results in enhanced ground state binding and transition state interactions. Molecular modeling reveals that MUG-K68N, UNG-N123 and family 5 Thermus thermophiles UDGb-A111N can form bidentate hydrogen bonds with the N3 and O4 moieties of the uracil base. Genetic analysis indicates the gain of function for A/U base pairs allows the MUG-K68N mutant to remove uracil incorporated into the genome during DNA replication. The implications of this study in the origin of life are discussed.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Yinling Liu
- 367 Hunter Laboratories, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Hyun-Wook Lee
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Bo Xia
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Allyn R Brice
- 367 Hunter Laboratories, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Sung-Hyun Park
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Hunter Balduf
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| | - Brian N Dominy
- 367 Hunter Laboratories, Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | - Weiguo Cao
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, 049 Life Sciences Facility, 190 Collings Street, Clemson, SC 29634, USA
| |
Collapse
|