1
|
Mohite SV, Sharma KK. Gut microbial metalloproteins and its role in xenobiotics degradation and ROS scavenging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:495-538. [PMID: 38960484 DOI: 10.1016/bs.apcsb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-β-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.
Collapse
Affiliation(s)
- Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
2
|
Furukawa Y, Shintani A, Narikiyo S, Sue K, Akutsu M, Muraki N. Characterization of a novel cysteine-less Cu/Zn-superoxide dismutase in Paenibacillus lautus missing a conserved disulfide bond. J Biol Chem 2023; 299:105040. [PMID: 37442237 PMCID: PMC10432803 DOI: 10.1016/j.jbc.2023.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Cu/Zn-superoxide dismutase (CuZnSOD) is an enzyme that binds a copper and zinc ion and also forms an intramolecular disulfide bond. Together with the copper ion as the active site, the disulfide bond is completely conserved among these proteins; indeed, the disulfide bond plays critical roles in maintaining the catalytically competent conformation of CuZnSOD. Here, we found that a CuZnSOD protein in Paenibacillus lautus (PaSOD) has no Cys residue but exhibits a significant level of enzyme activity. The crystal structure of PaSOD revealed hydrophobic and hydrogen-bonding interactions in substitution for the disulfide bond of the other CuZnSOD proteins. Also notably, we determined that PaSOD forms a homodimer through an additional domain with a novel fold at the N terminus. While the advantages of lacking Cys residues and adopting a novel dimer configuration remain obscure, PaSOD does not require a disulfide-introducing/correcting system for maturation and could also avoid misfolding caused by aberrant thiol oxidations under an oxidative environment.
Collapse
Affiliation(s)
| | | | | | - Kaori Sue
- Department of Chemistry, Keio University, Yokohama, Japan
| | - Masato Akutsu
- Department of Chemistry, Keio University, Yokohama, Japan
| | | |
Collapse
|
3
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
4
|
Furukawa Y, Shintani A, Kokubo T. A dual role of cysteine residues in the maturation of prokaryotic Cu/Zn-superoxide dismutase. Metallomics 2021; 13:6353531. [PMID: 34402915 DOI: 10.1093/mtomcs/mfab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022]
Abstract
Bacterial Cu/Zn-superoxide dismutase (SodC) is an enzyme catalyzing the disproportionation of superoxide radicals, to which the binding of copper and zinc ions and the formation of an intramolecular disulfide bond are essential. We previously showed that Escherichia coli SodC (SodC) was prone to spontaneous degradation in vivo in an immature form prior to the introduction of the disulfide bond. The post-translational maintenance involving the metal binding and the disulfide formation would thus control the stability as well as the enzymatic function of SodC; however, a mechanism of the SodC maturation remains obscure. Here, we show that the disulfide-reduced SodC can secure a copper ion as well as a zinc ion through the thiolate groups. Furthermore, the disulfide-reduced SodC was found to bind cuprous and cupric ions more tightly than SodC with the disulfide bond. The thiolate groups ligating the copper ion were then autooxidized to form the intramolecular disulfide bond, leading to the production of enzymatically active SodC. Based upon the experiments in vitro, therefore, we propose a mechanism for the activation of SodC, in which the conserved Cys residues play a dual role: the acquisition of a copper ion for the enzymatic activity and the formation of the disulfide bond for the structural stabilization.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Atsuko Shintani
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Teppei Kokubo
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Kondo M, Hara H, Kamijo F, Kamiya T, Adachi T. 6-Hydroxydopamine disrupts cellular copper homeostasis in human neuroblastoma SH-SY5Y cells. Metallomics 2021; 13:6311138. [PMID: 34185060 DOI: 10.1093/mtomcs/mfab041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is an essential trace element that plays an important role in maintaining neuronal functions such as the biosynthesis of neurotransmitters. In contrast, exposure to excess Cu results in cell injury. Therefore, intracellular Cu levels are strictly regulated by proteins related to Cu-trafficking, including ATP7A. Parkinson's disease (PD) is a neurodegenerative disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, the abnormality of Cu homeostasis was demonstrated to be related to the pathogenesis of PD. However, the association between Cu dyshomeostasis and PD remains unclear. In this study, we examined the effects of 6-hydroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, on cellular Cu trafficking in human neuroblastoma SH-SY5Y cells. 6-OHDA reduced the protein levels of the Cu exporter ATP7A and the Cu chaperone Atox1, but not CTR1, a Cu importer; however, it did not affect the expression of ATP7A and Atox1 mRNAs. The decreased levels of ATP7A and Atox1 proteins were restored by the antioxidant N-acetylcysteine and the lysosomal inhibitor bafilomycin A1. This suggests that 6-OHDA-induced oxidative stress facilitates the degradation of these proteins. In addition, the amount of intracellular Cu after exposure to CuCl2 was significantly higher in cells pretreated with 6-OHDA than in untreated cells. Moreover, 6-OHDA reduced the protein levels of the cuproenzyme dopamine β-hydroxylase that converts dopamine to noradrenaline. Thus, this study suggests that 6-OHDA disrupts Cu homeostasis through the dysregulation of cellular Cu trafficking, resulting in the dysfunction of neuronal cells.
Collapse
Affiliation(s)
- Mao Kondo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Fuka Kamijo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
6
|
Bonavita R, Laukkanen MO. Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxid Redox Signal 2021; 34:486-503. [PMID: 32600071 DOI: 10.1089/ars.2019.7968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: An increasing number of pathogens are acquiring resistance to antibiotics. Efficient antimicrobial drug regimens are important even for the most advanced therapies, which range from cutting-edge invasive clinical protocols, such as robotic surgeries, to the treatment of harmless bacterial diseases and to minor scratches to the skin. Therefore, there is an urgent need to survey alternative antimicrobial drugs that can reinforce or replace existing antibiotics. Recent Advances: Bacterial proteins that are critical for energy metabolism, promising novel anticancer thiourea derivatives, and the use of synthetic molecules that increase the sensitivity of currently used antibiotics are among the recently discovered antimicrobial drugs. Critical Issues: In the development of new drugs, serious consideration should be given to the previous bacterial evolutionary selection caused by antibiotics, by the high proliferation rate of bacteria, and by the simple prokaryotic structure of bacteria. Future Directions: The survey of drug targets has mainly focused on bacterial proteins, although host signaling molecules involved in the treatment of various pathologies may have unknown antimicrobial characteristics. Recent data have suggested that small molecule inhibitors might enhance the effect of antibiotics, for example, by limiting bacterial entry into host cells. Phagocytosis, the mechanism by which host cells internalize pathogens through β-actin cytoskeletal rearrangement, induces calcium signaling, small GTPase activation, and phosphorylation of the phosphatidylinositol 3-kinase-serine/threonine-specific protein kinase B pathway. Antioxid. Redox Signal. 34, 486-503.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Experimental Institute of Endocrinology and Oncology G. Salvatore, IEOS CNR, Naples, Italy
| | | |
Collapse
|
7
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat Commun 2018; 9:1693. [PMID: 29703933 PMCID: PMC5923229 DOI: 10.1038/s41467-018-04114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer–dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone. Mutations in superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Here the authors present the SOD1 crystal structure bound to the small cysteine-reactive molecule ebselen and show that ebselen is a chaperone for SOD1.
Collapse
|
9
|
Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure 2018; 26:695-707.e5. [PMID: 29606594 DOI: 10.1016/j.str.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.
Collapse
Affiliation(s)
- Alexandra Tsirigotaki
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Jozefien De Geyter
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Marios Frantzeskos Sardis
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Morten Beck Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat Commun 2017; 8:1881. [PMID: 29192167 PMCID: PMC5709426 DOI: 10.1038/s41467-017-01996-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Prion-like misfolding of superoxide dismutase 1 (SOD1) is associated with the disease ALS, but the mechanism of misfolding remains unclear, partly because misfolding is difficult to observe directly. Here we study the most misfolding-prone form of SOD1, reduced un-metallated monomers, using optical tweezers to measure unfolding and refolding of single molecules. We find that the folding is more complex than suspected, resolving numerous previously undetected intermediate states consistent with the formation of individual β-strands in the native structure. We identify a stable core of the protein that unfolds last and refolds first, and directly observe several distinct misfolded states that branch off from the native folding pathways at specific points after the formation of the stable core. Partially folded intermediates thus play a crucial role mediating between native and non-native folding. These results suggest an explanation for SOD1's propensity for prion-like misfolding and point to possible targets for therapeutic intervention.
Collapse
|
11
|
Mera-Adasme R, Erdmann H, Bereźniak T, Ochsenfeld C. Destabilization of the metal site as a hub for the pathogenic mechanism of five ALS-linked mutants of copper, zinc superoxide dismutase. Metallomics 2017; 8:1141-1150. [PMID: 27603566 DOI: 10.1039/c6mt00085a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease, with no effective pharmacological treatment. Its pathogenesis is unknown, although a subset of the cases is linked to genetic mutations. A significant fraction of the mutations occur in one protein, copper, zinc superoxide dismutase (SOD1). The toxic function of mutant SOD1 has not been elucidated, but damage to the metal site of the protein is believed to play a major role. In this work, we study the electrostatic loop of SOD1, which we had previously proposed to work as a "solvent seal" isolating the metal site from water molecules. Out of the five contact points identified between the electrostatic loop and its dock in the rest of the protein, three points were found to be affected by ALS-linked mutations, with a total of five mutations identified. The effect of the five mutations was studied using methods of computational chemistry. We found that four of the mutations destabilize the proposed solvent seal, while the fifth mutation directly affects the metal-site stability. In the two contact points unaffected by ALS-linked mutations, the side chains of the residues were not found to play a stabilizing role. Our results show that the docking of the electrostatic loop to the rest of SOD1 plays a role in ALS pathogenesis, in support of that structure acting as a solvent barrier for the metal site. The results provide a unified pathogenic mechanism for five different ALS-linked mutations of SOD1.
Collapse
Affiliation(s)
- Raúl Mera-Adasme
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Hannes Erdmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Tomasz Bereźniak
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich 81377, Germany.
| |
Collapse
|
12
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
13
|
Anzai I, Tokuda E, Mukaiyama A, Akiyama S, Endo F, Yamanaka K, Misawa H, Furukawa Y. A misfolded dimer of Cu/Zn-superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Protein Sci 2017; 26:484-496. [PMID: 27977888 DOI: 10.1002/pro.3094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Misfolding of mutant Cu/Zn-superoxide dismutase (SOD1) is a pathological hallmark in a familial form of amyotrophic lateral sclerosis. Pathogenic mutations have been proposed to monomerize SOD1 normally adopting a homodimeric configuration and then trigger abnormal oligomerization of SOD1 proteins. Despite this, a misfolded conformation of SOD1 leading to the oligomerization at physiological conditions still remains ambiguous. Here, we show that, around the body temperature (∼37°C), mutant SOD1 maintains a dimeric configuration but lacks most of its secondary structures. Also, such an abnormal SOD1 dimer with significant structural disorder was prone to irreversibly forming the oligomers crosslinked via disulfide bonds. The disulfide-crosslinked oligomers of SOD1 were detected in the spinal cords of the diseased mice expressing mutant SOD1. We hence propose an alternative pathway of mutant SOD1 misfolding that is responsible for oligomerization in the pathologies of the disease.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Atsushi Mukaiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, NINS, Okazaki, 444-8585, Japan.,Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | | |
Collapse
|
14
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
15
|
González A, Sevilla E, Bes MT, Peleato ML, Fillat MF. Pivotal Role of Iron in the Regulation of Cyanobacterial Electron Transport. Adv Microb Physiol 2016; 68:169-217. [PMID: 27134024 DOI: 10.1016/bs.ampbs.2016.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-containing metalloproteins are the main cornerstones for efficient electron transport in biological systems. The abundance and diversity of iron-dependent proteins in cyanobacteria makes those organisms highly dependent of this micronutrient. To cope with iron imbalance, cyanobacteria have developed a survey of adaptation strategies that are strongly related to the regulation of photosynthesis, nitrogen metabolism and other central electron transfer pathways. Furthermore, either in its ferrous form or as a component of the haem group, iron plays a crucial role as regulatory signalling molecule that directly or indirectly modulates the composition and efficiency of cyanobacterial redox reactions. We present here the major mechanism used by cyanobacteria to couple iron homeostasis to the regulation of electron transport, making special emphasis in processes specific in those organisms.
Collapse
Affiliation(s)
| | - E Sevilla
- University of Zaragoza, Zaragoza, Spain
| | - M T Bes
- University of Zaragoza, Zaragoza, Spain
| | | | - M F Fillat
- University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
16
|
Lewin A, Hederstedt L. Heme A synthase in bacteria depends on one pair of cysteinyls for activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:160-168. [PMID: 26592143 DOI: 10.1016/j.bbabio.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.
Collapse
Affiliation(s)
- Anna Lewin
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden.
| |
Collapse
|