1
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Abd El-Aziz TM, Kaur A, Shapiro MS, Stockand JD, Archer CR. Optogenetic Control of PIP2 Interactions Shaping ENaC Activity. Int J Mol Sci 2022; 23:ijms23073884. [PMID: 35409240 PMCID: PMC8998630 DOI: 10.3390/ijms23073884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of the epithelial Na+ Channel (ENaC) is strongly dependent on the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 binds two distinct cationic clusters within the N termini of β- and γ-ENaC subunits (βN1 and γN2). The affinities of these sites were previously determined using short synthetic peptides, yet their role in sensitizing ENaC to changes in PIP2 levels in the cellular system is not well established. We addressed this question by comparing the effects of PIP2 depletion and recovery on ENaC channel activity and intracellular Na+ levels [Na+]i. We tested effects on ENaC activity with mutations to the PIP2 binding sites using the optogenetic system CIBN/CRY2-OCRL to selectively deplete PIP2. We monitored changes of [Na+]i by measuring the fluorescent Na+ indicator, CoroNa Green AM, and changes in channel activity by performing patch clamp electrophysiology. Whole cell patch clamp measurements showed a complete lack of response to PIP2 depletion and recovery in ENaC with mutations to βN1 or γN2 or both sites, compared to wild type ENaC. Whereas mutant βN1 also had no change in CoroNa Green fluorescence in response to PIP2 depletion, γN2 did have reduced [Na+]i, which was explained by having shorter CoroNa Green uptake and half-life. These results suggest that CoroNa Green measurements should be interpreted with caution. Importantly, the electrophysiology results show that the βN1 and γN2 sites on ENaC are each necessary to permit maximal ENaC activity in the presence of PIP2.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78228, USA; (T.M.A.E.-A.); (M.S.S.); (J.D.S.)
- Faculty of Science, Zoology Department, Minia University, El-Minia 61519, Egypt
| | - Amanpreet Kaur
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA;
| | - Mark S. Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78228, USA; (T.M.A.E.-A.); (M.S.S.); (J.D.S.)
| | - James D. Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78228, USA; (T.M.A.E.-A.); (M.S.S.); (J.D.S.)
| | - Crystal R. Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78228, USA; (T.M.A.E.-A.); (M.S.S.); (J.D.S.)
- Correspondence:
| |
Collapse
|
3
|
Olivença DV, Voit EO, Pinto FR. ENaC regulation by phospholipids and DGK explained through mathematical modeling. Sci Rep 2020; 10:13952. [PMID: 32811866 PMCID: PMC7435262 DOI: 10.1038/s41598-020-70630-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023] Open
Abstract
Cystic fibrosis is a condition caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). It is also thought to increase the activity of epithelial sodium channels (ENaC). The altered function of these ion channels is one of the causes of the thick dehydrated mucus that characterizes the disease and is partially responsible for recurrent pulmonary infections and inflammation events that ultimately destroy the lungs of affected subjects. Phosphoinositides are signaling lipids that regulate numerous cellular processes and membrane proteins, including ENaC. Inhibition of diacylglycerol kinase (DGK), an enzyme of the phosphoinositide pathway, reduces ENaC function. We propose a computational analysis that is based on the combination of two existing mathematical models: one representing the dynamics of phosphoinositides and the other explaining how phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) influences ENaC activity and, consequently, airway surface liquid. This integrated model permits, for the first time, a detailed assessment of the intricate interactions between DGK and ENaC and is consistent with available literature data. In particular, the computational approach allows comparisons of two competing hypotheses regarding the regulation of ENaC. The results strongly suggest that the regulation of ENaC is primarily exerted through the control of PI(4,5)P2 production by type-I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI), which in turn is controlled by phosphatidic acid (PA), the product of the DGK reaction.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Faculty of Sciences, BioISI – Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisbon, Portugal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic Drive, Atlanta, GA 30332-2000 USA
| | - Francisco R. Pinto
- Faculty of Sciences, BioISI – Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Archer CR, Enslow BT, Carver CM, Stockand JD. Phosphatidylinositol 4,5-bisphosphate directly interacts with the β and γ subunits of the sodium channel ENaC. J Biol Chem 2020; 295:7958-7969. [PMID: 32341072 PMCID: PMC7278353 DOI: 10.1074/jbc.ra120.012606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of β- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of β- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of β-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of β- (Kd ∼5.2 μm) and γ-ENaC (Kd ∼13 μm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 μm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.
Collapse
Affiliation(s)
- Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Benjamin T Enslow
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States
| | - Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center, San Antonio, Texas, United States
| |
Collapse
|
5
|
Effects of syntaxins 2, 3, and 4 on rat and human epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Pflugers Arch 2020; 472:461-471. [PMID: 32221667 PMCID: PMC7165155 DOI: 10.1007/s00424-020-02365-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/20/2023]
Abstract
Syntaxins are SNARE proteins and may play a role in epithelial sodium channel (ENaC) trafficking. The aim of the present study was to investigate the effects of syntaxin 2 (STX2), syntaxin 3 (STX3), and syntaxin 4 (STX4) on rat (rENaC) and human ENaC (hENaC). Co-expression of rENaC and STX3 or STX4 in Xenopus laevis oocytes increased amiloride-sensitive whole-cell currents (ΔIami) on average by 50% and 135%, respectively, compared to oocytes expressing rENaC alone. In contrast, STX2 had no significant effect on rENaC. Similar to its effect on rENaC, STX3 stimulated hENaC by 48%. In contrast, STX2 and STX4 inhibited hENaC by 51% and 44%, respectively. Using rENaC carrying a FLAG tag in the extracellular loop of the β-subunit, we demonstrated that the stimulatory effects of STX3 and STX4 on ΔIami were associated with an increased expression of the channel at the cell surface. Co-expression of STX3 or STX4 did not significantly alter the degree of proteolytic channel activation by chymotrypsin. STX3 had no effect on the inhibition of rENaC by brefeldin A, and the stimulatory effect of STX3 was preserved in the presence of dominant negative Rab11. This indicates that the stimulatory effect of STX3 is not mediated by inhibiting channel retrieval or by stimulating fusion of recycling endosomes. Our results suggest that the effects of syntaxins on ENaC are isoform and species dependent. Furthermore, our results demonstrate that STX3 increases ENaC expression at the cell surface, probably by enhancing insertion of vesicles carrying newly synthesized channels.
Collapse
|
6
|
Zhao R, Ali G, Chang J, Komatsu S, Tsukasaki Y, Nie HG, Chang Y, Zhang M, Liu Y, Jain K, Jung BG, Samten B, Jiang D, Liang J, Ikebe M, Matthay MA, Ji HL. Proliferative regulation of alveolar epithelial type 2 progenitor cells by human Scnn1d gene. Am J Cancer Res 2019; 9:8155-8170. [PMID: 31754387 PMCID: PMC6857051 DOI: 10.7150/thno.37023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 01/03/2023] Open
Abstract
Lung epithelial sodium channel (ENaC) encoded by Scnn1 genes is essential for maintaining transepithelial salt and fluid homeostasis in the airway and the lung. Compared to α, β, and γ subunits, the role of respiratory δ-ENaC has not been studied in vivo due to the lack of animal models. Methods: We characterized full-length human δ802-ENaC expressed in both Xenopus oocytes and humanized transgenic mice. AT2 proliferation and differentiation in 3D organoids were analysed with FACS and a confocal microscope. Both two-electrode voltage clamp and Ussing chamber systems were applied to digitize δ802-ENaC channel activity. Immunoblotting was utilized to analyse δ802-ENaC protein. Transcripts of individual ENaC subunits in human lung tissues were quantitated with qPCR. Results: The results indicate that δ802-ENaC functions as an amiloride-inhibitable Na+ channel. Inhibitory peptide α-13 distinguishes δ802- from α-type ENaC channels. Modified proteolysis of γ-ENaC by plasmin and aprotinin did not alter the inhibition of amiloride and α-13 peptide. Expression of δ802-ENaC at the apical membrane of respiratory epithelium was detected with biophysical features similar to those of heterologously expressed channels in oocytes. δ802-ENaC regulated alveologenesis through facilitating the proliferation of alveolar type 2 epithelial cells. Conclusion: The humanized mouse line conditionally expressing human δ802-ENaC is a novel model for studying the expression and function of this protein in vivo .
Collapse
|
7
|
Olivença DV, Fonseca LL, Voit EO, Pinto FR. Thickness of the airway surface liquid layer in the lung is affected in cystic fibrosis by compromised synergistic regulation of the ENaC ion channel. J R Soc Interface 2019; 16:20190187. [PMID: 31455163 DOI: 10.1098/rsif.2019.0187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The lung epithelium is lined with a layer of airway surface liquid (ASL) that is crucial for healthy lung function. ASL thickness is controlled by two ion channels: epithelium sodium channel (ENaC) and cystic fibrosis (CF) transmembrane conductance regulator (CFTR). Here, we present a minimal mathematical model of ENaC, CFTR and ASL regulation that sheds light on the control of ENaC by the short palate lung and nasal epithelial clone 1 (SPLUNC1) protein and by phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). The model, despite its simplicity, yields a good fit to experimental observations and is an effective tool for exploring the interplay between ENaC, CFTR and ASL. Steady-state data and dynamic information constrain the model's parameters without ambiguities. Testing the hypothesis that PI(4,5)P2 protects ENaC from ubiquitination suggests that this protection does not improve the model results and that the control of the ENaC opening probability by PI(4,5)P2 is sufficient to explain all available data. The model analysis further demonstrates that ASL at the steady state is sensitive to small changes in PI(4,5)P2 abundance, particularly in CF conditions, which suggests that manipulation of phosphoinositide metabolism may promote therapeutic benefits for CF patients.
Collapse
Affiliation(s)
- Daniel V Olivença
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| | - Luis L Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eberhard O Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Francisco R Pinto
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
8
|
Kota P, Gentzsch M, Dang YL, Boucher RC, Stutts MJ. The N terminus of α-ENaC mediates ENaC cleavage and activation by furin. J Gen Physiol 2018; 150:1179-1187. [PMID: 29980634 PMCID: PMC6080898 DOI: 10.1085/jgp.201711860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Epithelial Na+ channels comprise three homologous subunits (α, β, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34-82 are deleted (αΔ34-82). αΔ34-82-ENaC expression with WT β and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34-82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in β-ENaC, suggest that the reduced INa of αΔ34-82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34-82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34-82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.
Collapse
Affiliation(s)
- Pradeep Kota
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Martina Gentzsch
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Yan L Dang
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Richard C Boucher
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - M Jackson Stutts
- Marsico Lung Institute, Cystic Fibrosis Center and Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
9
|
Shobair M, Popov KI, Dang YL, He H, Stutts MJ, Dokholyan NV. Mapping allosteric linkage to channel gating by extracellular domains in the human epithelial sodium channel. J Biol Chem 2018; 293:3675-3684. [PMID: 29358325 DOI: 10.1074/jbc.ra117.000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) mediates sodium absorption in lung, kidney, and colon epithelia. Channels in the ENaC/degenerin family possess an extracellular region that senses physicochemical changes in the extracellular milieu and allosterically regulates the channel opening. Proteolytic cleavage activates the ENaC opening, by the removal of specific segments in the finger domains of the α- and γ ENaC-subunits. Cleavage causes perturbations in the extracellular region that propagate to the channel gate. However, it is not known how the channel structure mediates the propagation of activation signals through the extracellular sensing domains. Here, to identify the structure-function determinants that mediate allosteric ENaC activation, we performed MD simulations, thiol modification of residues substituted by cysteine, and voltage-clamp electrophysiology recordings. Our simulations of an ENaC heterotetramer, α1βα2γ, in the proteolytically cleaved and uncleaved states revealed structural pathways in the α-subunit that are responsible for ENaC proteolytic activation. To validate these findings, we performed site-directed mutagenesis to introduce cysteine substitutions in the extracellular domains of the α-, β-, and γ ENaC-subunits. Insertion of a cysteine at the α-subunit Glu557 site, predicted to stabilize a closed state of ENaC, inhibited ENaC basal activity and retarded the kinetics of proteolytic activation by 2-fold. Our results suggest that the lower palm domain of αENaC is essential for ENaC activation. In conclusion, our integrated computational and experimental approach suggests key structure-function determinants for ENaC proteolytic activation and points toward a mechanistic model for the allosteric communication in the extracellular domains of the ENaC/degenerin family channels.
Collapse
Affiliation(s)
- Mahmoud Shobair
- From the Program in Molecular and Cellular Biophysics.,Curriculum in Bioinformatics and Computational Biology.,Department of Biochemistry and Biophysics, and.,Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Yan L Dang
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hong He
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - M Jackson Stutts
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Program in Molecular and Cellular Biophysics, .,Curriculum in Bioinformatics and Computational Biology.,Department of Biochemistry and Biophysics, and.,Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Niu YY, Yang Y, Liu Y, Huang LD, Yang XN, Fan YZ, Cheng XY, Cao P, Hu YM, Li L, Lu XY, Tian Y, Yu Y. Exploration of the Peptide Recognition of an Amiloride-sensitive FMRFamide Peptide-gated Sodium Channel. J Biol Chem 2016; 291:7571-82. [PMID: 26867576 DOI: 10.1074/jbc.m115.710251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily. The peptide ligand control of the channel gating might be an ancient ligand-gating feature in this superfamily. Therefore, studying the peptide recognition of FaNaC channels would advance our understanding of the ligand-gating properties of this superfamily of ion channels. Here we demonstrate that Tyr-131, Asn-134, Asp-154, and Ile-160, located in the putative upper finger domain ofHelix aspersaFaNaC (HaFaNaC) channels, are key residues for peptide recognition of this ion channel. Two HaFaNaC specific-insertion motifs among the ENaC/DEG superfamily, residing at the putative α4-α5 linker of the upper thumb domain and the α6-α7 linker of the upper knuckle domain, are also essential for the peptide recognition of HaFaNaC channels. Chemical modifications and double mutant cycle analysis further indicated that those two specific inserts and key residues in the upper finger domain together participate in peptide recognition of HaFaNaC channels. This ligand recognition site is distinct from that of acid-sensing ion channels (ASICs) by a longer distance between the recognition site and the channel gate, carrying useful information about the ligand gating and the evolution of the trimeric ENaC/DEG superfamily of ion channels.
Collapse
Affiliation(s)
- You-Ya Niu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Na Yang
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying-Zhe Fan
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, 200062, China
| | - Xiao-Yang Cheng
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China, and Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - You-Min Hu
- Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyong Li
- Department of Anesthesiology and Perioperative Medicine, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiang-Yang Lu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yun Tian
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China,
| | - Ye Yu
- From the College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China, Institute of Medical Sciences and Departments of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
12
|
Shobair M, Dagliyan O, Kota P, Dang YL, He H, Stutts MJ, Dokholyan NV. Gain-of-Function Mutation W493R in the Epithelial Sodium Channel Allosterically Reconfigures Intersubunit Coupling. J Biol Chem 2015; 291:3682-92. [PMID: 26668308 DOI: 10.1074/jbc.m115.678052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/21/2022] Open
Abstract
Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, β, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1βα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1β and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1β interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state.
Collapse
Affiliation(s)
- Mahmoud Shobair
- From the Program in Molecular and Cellular Biophysics, Curriculum in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, and
| | - Onur Dagliyan
- From the Program in Molecular and Cellular Biophysics, Department of Biochemistry and Biophysics, and
| | - Pradeep Kota
- From the Program in Molecular and Cellular Biophysics, Department of Biochemistry and Biophysics, and
| | - Yan L Dang
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Hong He
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - M Jackson Stutts
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nikolay V Dokholyan
- From the Program in Molecular and Cellular Biophysics, Curriculum in Bioinformatics and Computational Biology, Department of Biochemistry and Biophysics, and Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Nussinov R, Tsai CJ. Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 2014; 30:17-24. [PMID: 25500675 DOI: 10.1016/j.sbi.2014.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023]
Abstract
Classically, allostery induces a functional switch through a conformational change. However, lately an increasing number of studies concluded that the allostery they observe takes place through sheer dynamics. Here we explain that even if a structural comparison between the active and inactive states does not detect a conformational change, it does not mean that there is no conformational change. We list likely reasons for this lack of observation, including crystallization conditions and crystal effects; one of the states is disordered; the structural comparisons disregard the quaternary protein structure; overlooking synergy effects among allosteric effectors and graded incremental switches and too short molecular dynamics simulations. Specific functions are performed by distinct conformations; they emerge through specific interactions between conformationally selected states.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| |
Collapse
|