1
|
Muñoz S, Blanco-Romero E, González-Acosta D, Rodriguez-Acebes S, Megías D, Lopes M, Méndez J. RAD51 restricts DNA over-replication from re-activated origins. EMBO J 2024; 43:1043-1064. [PMID: 38360996 PMCID: PMC10942984 DOI: 10.1038/s44318-024-00038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel González-Acosta
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Fischer U, Meese E. Gene Amplification in Tumor Cells: Developed De Novo or Adopted from Stem Cells. Cells 2022; 12:cells12010148. [PMID: 36611942 PMCID: PMC9818554 DOI: 10.3390/cells12010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Gene amplifications have been known for several decades as physiological processes in amphibian and flies, e.g., during eggshell development in Drosophila and as part of pathological processes in humans, specifically in tumors and drug-resistant cells. The long-held belief that a physiological gene amplification does not occur in humans was, however, fundamental questioned by findings that showed gene amplification in human stem cells. We hypothesis that the physiological and the pathological, i.e., tumor associated processes of gene amplification share at their beginning the same underlying mechanism. Re-replication was reported both in the context of tumor related genome instability and during restricted time windows in Drosophila development causing the known developmental gene amplification in Drosophila. There is also growing evidence that gene amplification and re-replication were present in human stem cells. It appears likely that stem cells utilize a re-replication mechanism that has been developed early in evolution as a powerful tool to increase gene copy numbers very efficiently. Here, we show that, several decades ago, there was already evidence of gene amplification in non-tumor mammalian cells, but that was not recognized at the time and interpreted accordingly. We give an overview on gene amplifications during normal mammalian development, the possible mechanism that enable gene amplification and hypothesize how tumors adopted this capability for gene amplification.
Collapse
|
4
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Feng YL, Liu Q, Chen RD, Liu SC, Huang ZC, Liu KM, Yang XY, Xie AY. DNA nicks induce mutational signatures associated with BRCA1 deficiency. Nat Commun 2022; 13:4285. [PMID: 35879372 PMCID: PMC9314409 DOI: 10.1038/s41467-022-32011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Analysis of human cancer genome sequences has revealed specific mutational signatures associated with BRCA1-deficient tumors, but the underlying mechanisms remain poorly understood. Here, we show that one-ended DNA double strand breaks (DSBs) converted from CRISPR/Cas9-induced nicks by DNA replication, not two-ended DSBs, cause more characteristic chromosomal aberrations and micronuclei in Brca1-deficient cells than in wild-type cells. BRCA1 is required for efficient homologous recombination of these nick-converted DSBs and suppresses bias towards long tract gene conversion and tandem duplication (TD) mediated by two-round strand invasion in a replication strand asymmetry. However, aberrant repair of these nick-converted one-ended DSBs, not that of two-ended DSBs in Brca1-deficient cells, generates mutational signatures such as small indels with microhomology (MH) at the junctions, translocations and small MH-mediated TDs, resembling those in BRCA1-deficient tumors. These results suggest a major contribution of DNA nicks to mutational signatures associated with BRCA1 deficiency in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Li Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| | - Qian Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Ruo-Dan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Si-Cheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Zhi-Cheng Huang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Kun-Ming Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - Xiao-Ying Yang
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China.,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China
| | - An-Yong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310019, Hangzhou, Zhejiang, P. R. China. .,Institute of Translational Medicine, Zhejiang University School of Medicine and Zhejiang University Cancer Center, 310029, Hangzhou, Zhejiang, P. R. China.
| |
Collapse
|
6
|
Zhang J, Jing L, Tan S, Zeng EM, Lin Y, He L, Hu Z, Liu J, Guo Z. Inhibition of miR-1193 leads to synthetic lethality in glioblastoma multiforme cells deficient of DNA-PKcs. Cell Death Dis 2020; 11:602. [PMID: 32732911 PMCID: PMC7393494 DOI: 10.1038/s41419-020-02812-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor and has the highest mortality rate among cancers and high resistance to radiation and cytotoxic chemotherapy. Although some targeted therapies can partially inhibit oncogenic mutation-driven proliferation of GBM cells, therapies harnessing synthetic lethality are ‘coincidental’ treatments with high effectiveness in cancers with gene mutations, such as GBM, which frequently exhibits DNA-PKcs mutation. By implementing a highly efficient high-throughput screening (HTS) platform using an in-house-constructed genome-wide human microRNA inhibitor library, we demonstrated that miR-1193 inhibition sensitized GBM tumor cells with DNA-PKcs deficiency. Furthermore, we found that miR-1193 directly targets YY1AP1, leading to subsequent inhibition of FEN1, an important factor in DNA damage repair. Inhibition of miR-1193 resulted in accumulation of DNA double-strand breaks and thus increased genomic instability. RPA-coated ssDNA structures enhanced ATR checkpoint kinase activity, subsequently activating the CHK1/p53/apoptosis axis. These data provide a preclinical theory for the application of miR-1193 inhibition as a potential synthetic lethal approach targeting GBM cancer cells with DNA-PKcs deficiency.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Li Jing
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Subee Tan
- Key Laboratory for Molecular Biotechnology, College of Life Sciences, Nanjing University, 210093, Nanjing, Jiangsu, P.R. China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, R.P. China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, 17176, Sweden
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China
| | - Jianping Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 210097, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
7
|
PAICS contributes to gastric carcinogenesis and participates in DNA damage response by interacting with histone deacetylase 1/2. Cell Death Dis 2020; 11:507. [PMID: 32632107 PMCID: PMC7338359 DOI: 10.1038/s41419-020-2708-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.
Collapse
|
8
|
Liu L, Cui Z, Zhang J, Wang J, Gu S, Ma J, Chen H, Hang L, Yang J, Shi Y. Knockdown of NRAGE Impairs Homologous Recombination Repair and Sensitizes Hepatoblastoma Cells to Ionizing Radiation. Cancer Biother Radiopharm 2020; 35:41-49. [PMID: 31916845 DOI: 10.1089/cbr.2019.2968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: NRAGE (neurotrophin receptor-interacting melanoma antigen-encoding gene homolog) has a complex role and regulates cell growth in different tumor cells. Although NRAGE was been discovered for more than 10 years ago, the function of NRAGE in hepatoblastoma (HB) cells is currently unknown. Materials and Methods: The expression of NRAGE was detected by reverse transcription-quantitative polymerase chain reaction assay or western blotting assay. Cellular apoptosis was analyzed to estimate the effect of NRAGE under radiation. The ability of clonogenic capacity was evaluated to confirm the influence of proliferation for NRAGE by radiation. The immunofluorescence assay was used to further study the expression of NRAGE under radiation. A nude mouse tumor xenograft model was constructed to confirm the effect of NRAGE deficiency under radiation conditions in vivo. Results: The authors determined that deletion of NRAGE significantly inhibited HB cell proliferation in vitro and in vivo, and NRAGE knockdown apparently sensitized HB cells to ionizing radiation (IR). Further mechanistic studies revealed that NRAGE plays a critical role in homologous recombination by inhibiting the expression of RNF8 (ring finger protein 8) and BARD1 (BRCA1 associated RING domain 1) and the recruitment of RAD51. Conclusions: The authors demonstrated that downregulation of NRAGE sensitizes HB cell lines to IR in vitro and in vivo. It provides a promising therapeutic strategy for HB patients by specifically targeting NRAGE.
Collapse
Affiliation(s)
- Li Liu
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jing Wang
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ji Ma
- Department of Laboratory Clinical Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Chen
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Liang Hang
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jin Yang
- Department of Laboratory, Xigaze People's Hospital of Tibet, Xizang, China
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ginsenoside Rg1 impairs homologous recombination repair by targeting CtBP-interacting protein and sensitizes hepatoblastoma cells to DNA damage. Anticancer Drugs 2019; 29:756-766. [PMID: 29952772 DOI: 10.1097/cad.0000000000000646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ginsenoside Rg1, the primary pharmacologically active ingredient of the traditional Chinese herb ginseng, is widely used in the clinical treatment of diseases of the immune and nervous systems. Recent studies have shown that it also has an antitumor effect. In this study, we explored the effects of Rg1 on hepatoblastoma (HB) and its underlying mechanisms. We demonstrated that Rg1 significantly inhibited HB cell growth both in vivo and in vitro. Mechanistic studies revealed that Rg1 impaired homologous recombination and triggered double-strand breaks in HB cells by directly targeting CtBP-interacting protein (CtIP), a key double-strand break repair factor, which is highly expressed in HB tissues. Moreover, we also demonstrated that Rg1 sensitized HB cells to DNA-damaging agents both in vitro and in vivo. In conclusion, our data not only demonstrate the potential clinical application of Rg1 as a novel chemotherapeutic candidate but also offer a mechanism-based therapeutic option by which DNA-damaging agents can be used in combination with Rg1 to target HB.
Collapse
|
10
|
Li BX, Chen J, Chao B, Zheng Y, Xiao X. A Lamin-Binding Ligand Inhibits Homologous Recombination Repair of DNA Double-Strand Breaks. ACS CENTRAL SCIENCE 2018; 4:1201-1210. [PMID: 30276254 PMCID: PMC6161055 DOI: 10.1021/acscentsci.8b00379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 05/02/2023]
Abstract
Nuclear lamins are type V intermediate filament proteins. Lamins, including LA, LB1, LB2, and LC, are the major protein components forming the nuclear lamina to support the mechanical stability of the mammalian cell nucleus. Increasing evidence has shown that LA participates in homologous recombination (HR) repair of DNA double-strand breaks (DSBs) . However, the mechanisms underlying this process are incompletely understood. We recently identified the first lamin-binding ligand 1 (LBL1) that directly binds LA and inhibited cancer cell growth. We provided here further mechanistic investigations of LBL1 and revealed that LA interacts with the HR recombinase Rad51 to protect Rad51 from degradation. LBL1 inhibits LA-Rad51 interaction leading to accelerated proteasome-mediated degradation of Rad51, culminating in inhibition of HR repair of DSBs. These results uncover a novel post-translational regulation of Rad51 by LA and suggest that targeting the LA-Rad51 axis may represent a promising strategy to develop cancer therapeutics.
Collapse
Affiliation(s)
- Bingbing X. Li
- Program
in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
- E-mail:
| | - Jingjin Chen
- Program
in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Bo Chao
- Program
in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Yixian Zheng
- Department
of Embryology, Carnegie Institution for
Science, 3520 San Martin
Drive, Baltimore, Maryland 21218, United States
| | - Xiangshu Xiao
- Program
in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
- Knight
Cancer Institute, Oregon Health & Science
University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
- E-mail:
| |
Collapse
|
11
|
Vattulainen-Collanus S, Southwood M, Yang XD, Moore S, Ghatpande P, Morrell NW, Lagna G, Hata A. Bone morphogenetic protein signaling is required for RAD51-mediated maintenance of genome integrity in vascular endothelial cells. Commun Biol 2018; 1:149. [PMID: 30272025 PMCID: PMC6155317 DOI: 10.1038/s42003-018-0152-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The integrity of blood vessels is fundamental to vascular homeostasis. Inactivating mutations in the bone morphogenetic protein (BMP) receptor type II (BMPR2) gene cause hereditary vascular disorders, including pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia, suggesting that BMPR2 and its downstream signaling pathway are pivotal to the maintenance of vascular integrity through an unknown molecular mechanism. Here we report that inactivation of BMPR2 in pulmonary vascular endothelial cells results in a deficit of RAD51, an enzyme essential for DNA repair and replication. Loss of RAD51, which causes DNA damage and cell death, is also detected in animal models and human patients with pulmonary arterial hypertension. Restoration of BMPR2 or activation of the BMP signaling pathway rescues RAD51 and prevents DNA damage. This is an unexpected role of BMP signaling in preventing the accumulation of DNA damage and the concomitant loss of endothelial integrity and vascular remodeling associated with vascular disorders. Sanna Vattulainen-Collanus et al. report that mutations in the BMPR2 gene, which is associated with pulmonary arterial hypertension, result in a deficit of RAD51 and altered DNA repair and replication. They were able to rescue the RAD51-deficient phenotype by restoring BMPR2 activity in cell culture.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Mark Southwood
- Department of Pathology, Papworth Hospital, Papworth Everad, Cambridge, CB23 3RE, UK
| | - Xu Dong Yang
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Stephen Moore
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Prajakta Ghatpande
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Addenbrook's Hospital, Cambridge, CB2 0QQ, UK
| | - Giorgio Lagna
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, 94143, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, 94143, CA, USA.
| |
Collapse
|
12
|
Nakazaki Y, Tsuyama T, Azuma Y, Takahashi M, Tada S. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts. Biochem Biophys Res Commun 2017; 490:1375-1380. [PMID: 28694193 DOI: 10.1016/j.bbrc.2017.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
The initiation of DNA replication is strictly regulated by multiple mechanisms to ensure precise duplication of chromosomes. In higher eukaryotes, activity of the Cdt1 protein is temporally regulated during the cell cycle, and deregulation of Cdt1 induces DNA re-replication. In previous studies, we showed that excess Cdt1 inhibits DNA replication by suppressing progression of replication forks in Xenopus egg extracts. Here, we investigated the functional regions of Cdt1 that are required for the inhibition of DNA replication. We constructed a series of N-terminally or C-terminally deleted mutants of Cdt1 and examined their inhibitory effects on DNA replication in Xenopus egg extracts. Our results showed that the region spanning amino acids (a. a.) 255-620 is required for efficient inhibition of DNA replication, and that, within this region, a. a. 255-289 have a critical role in inhibition. Moreover, one of the Cdt1 mutants, Cdt1 R285A, was compromised with respect to the licensing activity but still inhibited DNA replication. This result suggests that Cdt1 has an unforeseen function in the negative regulation of DNA replication, and that this function is located within a molecular region that is distinct from those required for the licensing activity.
Collapse
Affiliation(s)
- Yuta Nakazaki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Takashi Tsuyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Yutaro Azuma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan
| | - Mikiko Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan
| | - Shusuke Tada
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University, Funabashi-shi, Chiba 274-8510, Japan.
| |
Collapse
|
13
|
Abstract
Replication forks encounter obstacles that must be repaired or bypassed to complete chromosome duplication before cell division. Proteomic analysis of replication forks suggests that the checkpoint and repair machinery travels with unperturbed forks, implying that they are poised to respond to stalling and collapse. However, impaired fork progression still generates aberrations, including repeat copy number instability and chromosome rearrangements. Deregulated origin firing also causes fork instability if a newer fork collides with an older one, generating double-strand breaks (DSBs) and partially rereplicated DNA. Current evidence suggests that multiple mechanisms are used to repair rereplication damage, yet these can have deleterious consequences for genome integrity.
Collapse
|
14
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells. Proc Natl Acad Sci U S A 2016; 113:13809-13814. [PMID: 27849606 DOI: 10.1073/pnas.1617110113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rereplication generates double-strand breaks (DSBs) at sites of fork collisions and causes genomic damage, including repeat instability and chromosomal aberrations. However, the primary mechanism used to repair rereplication DSBs varies across different experimental systems. In Drosophila follicle cells, developmentally regulated rereplication is used to amplify six genomic regions, two of which contain genes encoding eggshell proteins. We have exploited this system to test the roles of several DSB repair pathways during rereplication, using fork progression as a readout for DSB repair efficiency. Here we show that a null mutation in the microhomology-mediated end-joining (MMEJ) component, polymerase θ/mutagen-sensitive 308 (mus308), exhibits a sporadic thin eggshell phenotype and reduced chorion gene expression. Unlike other thin eggshell mutants, mus308 displays normal origin firing but reduced fork progression at two regions of rereplication. We also find that MMEJ compensates for loss of nonhomologous end joining to repair rereplication DSBs in a site-specific manner. Conversely, we show that fork progression is enhanced in the absence of both Drosophila Rad51 homologs, spindle-A and spindle-B, revealing homologous recombination is active and actually impairs fork movement during follicle cell rereplication. These results demonstrate that several DSB repair pathways are used during rereplication in the follicle cells and their contribution to productive fork progression is influenced by genomic position and repair pathway competition. Furthermore, our findings illustrate that specific rereplication DSB repair pathways can have major effects on cellular physiology, dependent upon genomic context.
Collapse
|
16
|
Abstract
As the ratio of the copy number of the most replicated to the unreplicated regions in the same chromosome, the definition of chromosomal replication complexity (CRC) appears to leave little room for variation, being either two during S-phase or one otherwise. However, bacteria dividing faster than they replicate their chromosome spike CRC to four and even eight. A recent experimental inquiry about the limits of CRC in Escherichia coli revealed two major reasons to avoid elevating it further: (i) increased chromosomal fragmentation and (ii) complications with subsequent double-strand break repair. Remarkably, examples of stable elevated CRC in eukaryotic chromosomes are well known under various terms like "differential replication," "underreplication," "DNA puffs," "onion-skin replication," or "re-replication" and highlight the phenomenon of static replication fork (sRF). To accurately describe the resulting "amplification by overinitiation," I propose a new term: "replification" (subchromosomal overreplication). In both prokaryotes and eukaryotes, replification, via sRF processing, causes double-strand DNA breaks and, with their repair elevating chromosomal rearrangements, represents a novel genome instability factor. I suggest how static replication bubbles could be stabilized and speculate that some tandem duplications represent such persistent static bubbles. Moreover, I propose how static replication bubbles could be transformed into tandem duplications, double minutes, or inverted triplications. Possible experimental tests of these models are discussed.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Thyme SB, Schier AF. Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development. Cell Rep 2016; 15:707-714. [PMID: 27149851 DOI: 10.1016/j.celrep.2016.03.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/02/2016] [Accepted: 03/18/2016] [Indexed: 01/12/2023] Open
Abstract
Error-prone repair of DNA double-strand breaks (DSBs) has been postulated to occur through classical non-homologous end joining (NHEJ) in systems ranging from nematode somatic tissues to zebrafish embryos. Contrary to this model, we show that zebrafish embryos mutant for DNA polymerase theta (Polq), a critical component of alternative end joining (alt-EJ), cannot repair DSBs induced by CRISPR/Cas9 or ionizing radiation. In the absence of DSBs, polq mutants are phenotypically normal, but they do not survive mutagenesis and display dramatic differences in the mutation profiles compared with the wild-type. These results show that alt-EJ repair is essential and dominant during the early development of a vertebrate.
Collapse
Affiliation(s)
- Summer B Thyme
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, MA 02138, USA.
| |
Collapse
|
18
|
Khan SR, Mahaseth T, Kouzminova EA, Cronan GE, Kuzminov A. Static and Dynamic Factors Limit Chromosomal Replication Complexity in Escherichia coli, Avoiding Dangers of Runaway Overreplication. Genetics 2016; 202:945-60. [PMID: 26801182 PMCID: PMC4788131 DOI: 10.1534/genetics.115.184697] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
We define chromosomal replication complexity (CRC) as the ratio of the copy number of the most replicated regions to that of unreplicated regions on the same chromosome. Although a typical CRC of eukaryotic or bacterial chromosomes is 2, rapidly growing Escherichia coli cells induce an extra round of replication in their chromosomes (CRC = 4). There are also E. coli mutants with stable CRC∼6. We have investigated the limits and consequences of elevated CRC in E. coli and found three limits: the "natural" CRC limit of ∼8 (cells divide more slowly); the "functional" CRC limit of ∼22 (cells divide extremely slowly); and the "tolerance" CRC limit of ∼64 (cells stop dividing). While the natural limit is likely maintained by the eclipse system spacing replication initiations, the functional limit might reflect the capacity of the chromosome segregation system, rather than dedicated mechanisms, and the tolerance limit may result from titration of limiting replication factors. Whereas recombinational repair is beneficial for cells at the natural and functional CRC limits, we show that it becomes detrimental at the tolerance CRC limit, suggesting recombinational misrepair during the runaway overreplication and giving a rationale for avoidance of the latter.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Tulip Mahaseth
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
19
|
DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:E6907-16. [PMID: 26607450 DOI: 10.1073/pnas.1507833112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome stability is carried out by a suite of DNA repair pathways that ensure the repair of damaged DNA and faithful replication of the genome. Of particular importance are the repair pathways, which respond to DNA double-strand breaks (DSBs), and how the efficiency of repair is influenced by sequence homology. In this study, we developed a genetic assay in diploid Saccharomyces cerevisiae cells to analyze DSBs requiring microhomologies for repair, known as microhomology-mediated end-joining (MMEJ). MMEJ repair efficiency increased concomitant with microhomology length and decreased upon introduction of mismatches. The central proteins in homologous recombination (HR), Rad52 and Rad51, suppressed MMEJ in this system, suggesting a competition between HR and MMEJ for the repair of a DSB. Importantly, we found that DNA polymerase delta (Pol δ) is critical for MMEJ, independent of microhomology length and base-pairing continuity. MMEJ recombinants showed evidence that Pol δ proofreading function is active during MMEJ-mediated DSB repair. Furthermore, mutations in Pol δ and DNA polymerase 4 (Pol λ), the DNA polymerase previously implicated in MMEJ, cause a synergistic decrease in MMEJ repair. Pol λ showed faster kinetics associating with MMEJ substrates following DSB induction than Pol δ. The association of Pol δ depended on RAD1, which encodes the flap endonuclease needed to cleave MMEJ intermediates before DNA synthesis. Moreover, Pol δ recruitment was diminished in cells lacking Pol λ. These data suggest cooperative involvement of both polymerases in MMEJ.
Collapse
|
20
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
21
|
WANG MAOXIN, CHEN XIANMING, CHEN HUI, ZHANG XIAN, LI JIANZHONG, GONG HONGXUN, SHIYAN CHEN, YANG FAN. RNF8 plays an important role in the radioresistance of human nasopharyngeal cancer cells in vitro. Oncol Rep 2015; 34:341-9. [DOI: 10.3892/or.2015.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|