1
|
Flores PC, Ahmed T, Podgorski J, Ortiz HR, Langlais PR, Mythreye K, Lee NY. Phosphoproteomic profiling identifies DNMT1 as a key substrate of beta IV spectrin-dependent ERK/MAPK signaling in suppressing angiogenesis. Biochem Biophys Res Commun 2024; 711:149916. [PMID: 38613866 PMCID: PMC11089540 DOI: 10.1016/j.bbrc.2024.149916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
βIV-spectrin is a membrane-associated cytoskeletal protein that maintains the structural stability of cell membranes and integral proteins such as ion channels and transporters. Its biological functions are best characterized in the brain and heart, although recently we discovered a fundamental new role in the vascular system. Using cellular and genetic mouse models, we reported that βIV-spectrin acts as a critical regulator of developmental and tumor-associated angiogenesis. βIV-spectrin was shown to selectively express in proliferating endothelial cells (EC) and suppress VEGF/VEGFR2 signaling by enhancing receptor internalization and degradation. Here we examined how these events impact the downstream kinase signaling cascades and target substrates. Based on quantitative phosphoproteomics, we found that βIV-spectrin significantly affects the phosphorylation of epigenetic regulatory enzymes in the nucleus, among which DNA methyltransferase 1 (DNMT1) was determined as a top substrate. Biochemical and immunofluorescence results showed that βIV-spectrin inhibits DNMT1 function by activating ERK/MAPK, which in turn phosphorylates DNMT1 at S717 to impede its nuclear localization. Given that DNMT1 controls the DNA methylation patterns genome-wide, and is crucial for vascular development, our findings suggest that epigenetic regulation is a key mechanism by which βIV-spectrin suppresses angiogenesis.
Collapse
Affiliation(s)
- Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, 85724, USA
| | - Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, 85724, USA
| | - Julia Podgorski
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Hannah R Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Paul R Langlais
- Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | | | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA; Comprehensive Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
2
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
3
|
Endoglin: An 'Accessory' Receptor Regulating Blood Cell Development and Inflammation. Int J Mol Sci 2020; 21:ijms21239247. [PMID: 33287465 PMCID: PMC7729465 DOI: 10.3390/ijms21239247] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a pleiotropic factor sensed by most cells. It regulates a broad spectrum of cellular responses including hematopoiesis. In order to process TGF-β1-responses in time and space in an appropriate manner, there is a tight regulation of its signaling at diverse steps. The downstream signaling is mediated by type I and type II receptors and modulated by the ‘accessory’ receptor Endoglin also termed cluster of differentiation 105 (CD105). Endoglin was initially identified on pre-B leukemia cells but has received most attention due to its high expression on activated endothelial cells. In turn, Endoglin has been figured out as the causative factor for diseases associated with vascular dysfunction like hereditary hemorrhagic telangiectasia-1 (HHT-1), pre-eclampsia, and intrauterine growth restriction (IUPR). Because HHT patients often show signs of inflammation at vascular lesions, and loss of Endoglin in the myeloid lineage leads to spontaneous inflammation, it is speculated that Endoglin impacts inflammatory processes. In line, Endoglin is expressed on progenitor/precursor cells during hematopoiesis as well as on mature, differentiated cells of the innate and adaptive immune system. However, so far only pro-monocytes and macrophages have been in the focus of research, although Endoglin has been identified in many other immune system cell subsets. These findings imply a functional role of Endoglin in the maturation and function of immune cells. Aside the functional relevance of Endoglin in endothelial cells, CD105 is differentially expressed during hematopoiesis, arguing for a role of this receptor in the development of individual cell lineages. In addition, Endoglin expression is present on mature immune cells of the innate (i.e., macrophages and mast cells) and the adaptive (i.e., T-cells) immune system, further suggesting Endoglin as a factor that shapes immune responses. In this review, we summarize current knowledge on Endoglin expression and function in hematopoietic precursors and mature hematopoietic cells of different lineages.
Collapse
|
4
|
Ustaszewski A, Janowska-Głowacka J, Wołyńska K, Pietrzak A, Badura-Stronka M. Genetic syndromes with vascular malformations - update on molecular background and diagnostics. Arch Med Sci 2020; 17:965-991. [PMID: 34336026 PMCID: PMC8314420 DOI: 10.5114/aoms.2020.93260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pietrzak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
5
|
Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novoa JM, Pericacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis 2020; 23:231-247. [PMID: 31897911 PMCID: PMC7160077 DOI: 10.1007/s10456-019-09703-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Endoglin (CD105) is an auxiliary receptor for members of the TFG-β superfamily. Whereas it has been demonstrated that the deficiency of endoglin leads to minor and defective angiogenesis, little is known about the effect of its increased expression, characteristic of several types of cancer. Angiogenesis is essential for tumor growth, so high levels of proangiogenic molecules, such as endoglin, are supposed to be related to greater tumor growth leading to a poor cancer prognosis. However, we demonstrate here that endoglin overexpression do not stimulate sprouting or vascularization in several in vitro and in vivo models. Instead, steady endoglin overexpression keep endothelial cells in an active phenotype that results in an impairment of the correct stabilization of the endothelium and the recruitment of mural cells. In a context of continuous enhanced angiogenesis, such as in tumors, endoglin overexpression gives rise to altered vessels with an incomplete mural coverage that permit the extravasation of blood. Moreover, these alterations allow the intravasation of tumor cells, the subsequent development of metastases and, thus, a worse cancer prognosis.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Cristina Egido-Turrión
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura Silva-Sousa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular Y Celular del Cáncer. CSIC, IBSAL and CIBERONC, Salamanca, Spain
| | - Alicia Rodríguez-Barbero
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and the Biomedical Research Institute of Salamanca (IBSAL), Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Epigallocatechin-3-gallate inhibits tumor angiogenesis: involvement of endoglin/Smad1 signaling in human umbilical vein endothelium cells. Biomed Pharmacother 2019; 120:109491. [DOI: 10.1016/j.biopha.2019.109491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
|
7
|
Mulens-Arias V, Rojas JM, Sanz-Ortega L, Portilla Y, Pérez-Yagüe S, Barber DF. Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102063. [DOI: 10.1016/j.nano.2019.102063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/12/2018] [Accepted: 07/10/2019] [Indexed: 01/08/2023]
|
8
|
Bus P, Gerrits T, Heemskerk SAC, Zandbergen M, Wolterbeek R, Bruijn JA, Baelde HJ, Scharpfenecker M. Endoglin Mediates Vascular Endothelial Growth Factor-A-Induced Endothelial Cell Activation by Regulating Akt Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2924-2935. [PMID: 30248336 DOI: 10.1016/j.ajpath.2018.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022]
Abstract
In diabetic nephropathy, differential expression of growth factors leads to vascular changes, including endothelial cell activation, monocyte infiltration, and inflammation. Endoglin plays an important role in endothelial function and is also associated with inflammation. In the kidney, vascular endoglin expression is increased in animal models of renal injury, where it contributes to disease severity, possibly by promoting endothelial cell activation and inflammation. Herein, we investigated whether endoglin expression is associated with diabetic nephropathy. In addition, we examined whether reducing endothelial endoglin expression in vitro affects endothelial cell activation and monocyte adhesion and, if so, which intracellular pathways are involved. Finally, we analyzed whether glomerular endoglin expression is correlated with endothelial cell activation in patients with diabetic nephropathy. Endoglin levels were significantly increased in mice with type 1 diabetes compared with control mice. Reducing endoglin expression in cultured endothelial cells significantly impaired the vascular endothelial growth factor-A-induced up-regulation of activation markers and monocyte adhesion. This was mediated by increased phosphorylation of Akt, thereby inhibiting activating transcription factor 2 phosphorylation, which regulates vascular cell adhesion molecule-1 (VCAM1) gene transcription in these cells. Last, endoglin colocalized with VCAM-1 in the glomeruli of diabetic patients, glomerular VCAM-1 expression was significantly increased in these patients, and this increase in VCAM-1 expression was correlated with increased glomerular endoglin expression. Thus, targeting endoglin function may have therapeutic value in patients at risk for diabetic nephropathy.
Collapse
Affiliation(s)
- Pascal Bus
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Tessa Gerrits
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sharon A C Heemskerk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Malu Zandbergen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
9
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
10
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
11
|
Paauwe M, Heijkants RC, Oudt CH, van Pelt GW, Cui C, Theuer CP, Hardwick JCH, Sier CFM, Hawinkels LJAC. Endoglin targeting inhibits tumor angiogenesis and metastatic spread in breast cancer. Oncogene 2016; 35:4069-79. [PMID: 26804178 DOI: 10.1038/onc.2015.509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
Endoglin, a transforming growth factor-β co-receptor, is highly expressed on angiogenic endothelial cells in solid tumors. Therefore, targeting endoglin is currently being explored in clinical trials for anti-angiogenic therapy. In this project, the redundancy between endoglin and vascular endothelial growth factor (VEGF) signaling in angiogenesis and the effects of targeting both pathways on breast cancer metastasis were explored. In patient samples, increased endoglin signaling after VEGF inhibition was observed. In vitro TRC105, an endoglin-neutralizing antibody, increased VEGF signaling in endothelial cells. Moreover, combined targeting of the endoglin and VEGF pathway, with the VEGF receptor kinase inhibitor SU5416, increased antiangiogenic effects in vitro and in a zebrafish angiogenesis model. Next, in a mouse model for invasive lobular breast cancer, the effects of TRC105 and SU5416 on tumor growth and metastasis were explored. Although TRC105 and SU5416 decreased tumor vascular density, tumor volume was unaffected. Strikingly, in mice treated with TRC105, or TRC105 and SU5416 combined, a strong inhibition in the number of metastases was seen. Moreover, upon resection of the primary tumor, strong inhibition of metastatic spread by TRC105 was observed in an adjuvant setting. To confirm these data, we assessed the effects of endoglin-Fc (an endoglin ligand trap) on metastasis formation. Similar to treatment with TRC105 in the resection model, endoglin-Fc-expressing tumors showed strong inhibition of distant metastases. These results show, for the first time, that targeting endoglin, either with neutralizing antibodies or a ligand trap, strongly inhibits metastatic spread of breast cancer in vivo.
Collapse
Affiliation(s)
- M Paauwe
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R C Heijkants
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - C H Oudt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - G W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - C Cui
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - C P Theuer
- Tracon Pharmaceuticals, San Diego, CA, USA
| | - J C H Hardwick
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C F M Sier
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - L J A C Hawinkels
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
13
|
VEGF, Notch and TGFβ/BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem Soc Trans 2015; 42:1576-83. [PMID: 25399573 DOI: 10.1042/bst20140231] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The blood vasculature is constantly adapting to meet the demand from tissue. In so doing, branches may form, reorganize or regress. These complex processes employ integration of multiple signalling cascades, some of them being restricted to endothelial and mural cells and, hence, suitable for targeting of the vasculature. Both genetic and drug targeting experiments have demonstrated the requirement for the vascular endothelial growth factor (VEGF) system, the Delta-like-Notch system and the transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) cascades in vascular development. Although several of these signalling cascades in part converge into common downstream components, they differ in temporal and spatial regulation and expression. For example, the pro-angiogenic VEGFA is secreted by cells in need of oxygen, presented to the basal side of the endothelium, whereas BMP9 and BMP10 are supplied via the bloodstream in constant interaction with the apical side to suppress angiogenesis. Delta-like 4 (DLL4), on the other hand, is provided as an endothelial membrane bound ligand. In the present article, we discuss recent data on the integration of these pathways in the process of sprouting angiogenesis and vascular patterning and malformation.
Collapse
|
14
|
Luo JY, Zhang Y, Wang L, Huang Y. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system. J Physiol 2015; 593:2995-3011. [PMID: 25952563 DOI: 10.1113/jp270207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.
Collapse
Affiliation(s)
- Jiang-Yun Luo
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Li Wang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Rossi E, Lopez-Novoa JM, Bernabeu C. Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1). Front Genet 2015; 5:457. [PMID: 25709613 PMCID: PMC4285797 DOI: 10.3389/fgene.2014.00457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Mutations in the endoglin gene (ENG) are responsible for ∼50% of all cases with hereditary hemorrhagic telangiectasia (HHT). Because of the absence of effective treatments for HHT symptoms, studies aimed at identifying novel biological functions of endoglin which could serve as therapeutic targets of the disease are needed. Endoglin is an endothelial membrane protein, whose most studied function has been its role as an auxiliary receptor in the TGF-β receptor complex. However, several lines of evidence suggest the involvement of endoglin in TGF-β-independent functions. Endoglin displays, within its zona pellucida domain, an RGD motif, which is a prototypic sequence involved in integrin-based interactions with other proteins. Indeed, we have recently described a novel role for endothelial endoglin in leukocyte trafficking and extravasation via its interaction with leukocyte integrins. In addition, functional, as well as protein and gene expression analysis have shown that ectopic endoglin represses the synthesis of several members of the integrin family and modulates integrin-mediated cell adhesions. This review focuses on the tight link between endoglin and integrins and how the role of endothelial endoglin in integrin-dependent cell adhesion processes can provide a better understanding of the pathogenic mechanisms leading to vascular lesions in endoglin haploinsufficient HHT1 patients.
Collapse
Affiliation(s)
- Elisa Rossi
- INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, UMR-S 1140 Paris, France
| | - José M Lopez-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, and Institute of Biomedical Research of Salamanca Salamanca, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas - Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid, Spain
| |
Collapse
|
16
|
Ségaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer 2014; 137:73-85. [DOI: 10.1002/ijc.29376] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Aude I. Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Amel Mohamadi
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Blandine Dizier
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Anna Lokajczyk
- Université Paris Descartes; Sorbonne Paris Cité Paris France
- INSERM, UMR 1140; Paris France
| | - Régis Brion
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
- CHU de Nantes; France
| | - Rachel Lanel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Jérôme Amiaud
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | - Céline Charrier
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
| | | | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012; Nantes 44035 France
- Université de Nantes, Nantes atlantique universités; Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours; Nantes France
- CHU de Nantes; France
| |
Collapse
|