1
|
Polderdijk SGI, Limzerwala JF, Spiess C. Plasma membrane damage limits cytoplasmic delivery by conventional cell penetrating peptides. PLoS One 2024; 19:e0305848. [PMID: 39226290 PMCID: PMC11371239 DOI: 10.1371/journal.pone.0305848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 09/05/2024] Open
Abstract
Intracellular delivery of large molecule cargo via cell penetrating peptides (CPPs) is an inefficient process and despite intense efforts in past decades, improvements in efficiency have been marginal. Utilizing a standardized and comparative analysis of the delivery efficiency of previously described cationic, anionic, and amphiphilic CPPs, we demonstrate that the delivery ceiling is accompanied by irreparable plasma membrane damage that is part of the uptake mechanism. As a consequence, intracellular delivery correlates with cell toxicity and is more efficient for smaller peptides than for large molecule cargo. The delivery of pharmaceutically relevant cargo quantities with acceptable toxicity thus seems hard to achieve with the CPPs tested in our study. Our results suggest that any engineered intracellular delivery system based on conventional cationic or amphiphilic CPPs, or the design principles underlying them, needs to accept low delivery yields due to toxicity limiting efficient cytoplasmic uptake. Novel peptide designs based on detailed study of uptake mechanisms are required to overcome these limitations.
Collapse
Affiliation(s)
| | - Jazeel F. Limzerwala
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, United States of America
| |
Collapse
|
2
|
Tindall CA, Möhlis K, Rapöhn I, Dommel S, Riedl V, Schneekönig M, Höfling C, Roßner S, Stichel J, Beck-Sickinger AG, Weiner J, Heiker JT. LRP1 is the cell-surface endocytosis receptor for vaspin in adipocytes. FEBS J 2024; 291:2134-2154. [PMID: 37921063 DOI: 10.1111/febs.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Vaspin is a serine protease inhibitor that protects against adipose tissue inflammation and insulin resistance, two key drivers of adipocyte dysfunction and metabolic disorders in obesity. Inhibition of target proteases such as KLK7 has been shown to reduce adipose tissue inflammation in obesity, while vaspin binding to cell surface GRP78 has been linked to reduced obesity-induced ER stress and insulin resistance in the liver. However, the molecular mechanisms by which vaspin directly affects cellular processes in adipocytes remain unknown. Using fluorescently labeled vaspin, we found that vaspin is rapidly internalized by mouse and human adipocytes, but less efficiently by endothelial, kidney, liver, and neuronal cells. Internalization occurs by active, clathrin-mediated endocytosis, which is dependent on vaspin binding to the LRP1 receptor, rather than GRP78 as previously thought. This was demonstrated by competition experiments and RNAi-mediated knock-down in adipocytes and by rescuing vaspin internalization in LRP1-deficient Pea13 cells after transfection with a functional LRP1 minireceptor. Vaspin internalization is further increased in mature adipocytes after insulin-stimulated translocation of LRP1. Although vaspin has nanomolar affinity for LRP1 clusters II-IV, binding to cell surface heparan sulfates is required for efficient LRP1-mediated internalization. Native, but not cleaved vaspin, and also vaspin polymers are efficiently endocytosed, and ultimately targeted for lysosomal degradation. Our study provides mechanistic insight into the uptake and degradation of vaspin in adipocytes, thereby broadening our understanding of its functional repertoire. We hypothesize the vaspin-LRP1 axis to be an important mediator of vaspin effects not only in adipose tissue but also in other LRP1-expressing cells.
Collapse
Affiliation(s)
- Catherine A Tindall
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Germany
| | - Kevin Möhlis
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
| | - Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
| | - Sebastian Dommel
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Germany
| | - Veronika Riedl
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Germany
| | - Michael Schneekönig
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | - Jan Stichel
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Germany
| | | | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Germany
| |
Collapse
|
3
|
Wang C, Liu Y, Liu X, Zhao J, Lang B, Wu F, Wen Z, Sun C. IFN-Inducible SerpinA5 Triggers Antiviral Immunity by Regulating STAT1 Phosphorylation and Nuclear Translocation. Int J Mol Sci 2023; 24:5458. [PMID: 36982532 PMCID: PMC10049297 DOI: 10.3390/ijms24065458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Deeply understanding virus-host interactions is a prerequisite for developing effective strategies to control frequently emerging infectious diseases, which have become a serious challenge for global public health. The type I interferon (IFN)-mediated JAK/STAT pathway is well known for playing an essential role in host antiviral immunity, but the exact regulatory mechanisms of various IFN-stimulated genes (ISGs) are not yet fully understood. We herein reported that SerpinA5, as a novel ISG, played a previously unrecognized role in antiviral activity. Mechanistically, SerpinA5 can upregulate the phosphorylation of STAT1 and promote its nuclear translocation, thus effectively activating the transcription of IFN-related signaling pathways to impair viral infections. Our data provide insights into SerpinA5-mediated innate immune signaling during virus-host interactions.
Collapse
Affiliation(s)
- Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Bing Lang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyu Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
4
|
Zorko M, Jones S, Langel Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv Drug Deliv Rev 2022; 180:114044. [PMID: 34774552 DOI: 10.1016/j.addr.2021.114044] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Extensive research has been undertaken in the pursuit of anticancer therapeutics. Many anticancer drugs require specificity of delivery to cancer cells, whilst sparing healthy tissue. Cell-penetrating peptides (CPPs), now well established as facilitators of intracellular delivery, have in recent years advanced to incorporate target specificity and thus possess great potential for the targeted delivery of anticancer cargoes. Though none have yet been approved for clinical use, this novel technology has already entered clinical trials. In this review we present CPPs, discuss their classification, mechanisms of cargo internalization and highlight strategies for conjugation to anticancer moieties including their incorporation into therapeutic proteins. As the mainstay of this review, strategies to build specificity into tumor targeting CPP constructs through exploitation of the tumor microenvironment and the use of tumor homing peptides are discussed, whilst acknowledging the extensive contribution made by CPP constructs to target specific protein-protein interactions integral to intracellular signaling pathways associated with tumor cell survival and progression. Finally, antibody/antigen CPP conjugates and their potential roles in cancer immunotherapy and diagnostics are considered. In summary, this review aims to harness the potential of CPP-aided drug delivery for future cancer therapies and diagnostics whilst highlighting some of the most recent achievements in selective delivery of anticancer drugs, including cytostatic drugs, to a range of tumor cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Sarah Jones
- University of Wolverhampton, School of Pharmacy, Faculty of Science & Engineering, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia 50411, Estonia.
| |
Collapse
|
5
|
A. Tindall C, Erkner E, Stichel J, G. Beck-Sickinger A, Hoffmann A, Weiner J, T. Heiker J. Cleavage of the vaspin N-terminus releases cell-penetrating peptides that affect early stages of adipogenesis and inhibit lipolysis in mature adipocytes. Adipocyte 2021; 10:216-231. [PMID: 33866927 PMCID: PMC8078822 DOI: 10.1080/21623945.2021.1910154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vaspin expression and function is related to metabolic disorders and comorbidities of obesity. In various cellular and animal models of obesity, diabetes and atherosclerosis vaspin has shown beneficial, protective and/or compensatory action. While testing proteases for inhibition by vaspin, we noticed specific cleavage within the vaspin N-terminus and sequence analysis predicted cell-penetrating activity for the released peptides. These findings raised the question whether these proteolytic peptides exhibit biological activity. We synthesized various N-terminal vaspin peptides to investigate cell-penetrating activity and analyse uptake mechanisms. Focusing on adipocytes, we performed microarray analysis and functional assays to elucidate biological activities of the vaspin–derived peptide, which is released by KLK7 cleavage (vaspin residues 21-30; VaspinN). Our study provides first evidence that proteolytic processing of the vaspin N-terminus releases cell-penetrating and bioactive peptides with effects on adipocyte biology. The VaspinN peptide increased preadipocyte proliferation, interfered with clonal expansion during the early stage of adipogenesis and blunted adrenergic cAMP-signalling, downstream lipolysis as well as insulin signalling in mature adipocytes. Protease-mediated release of functional N-terminal peptides presents an additional facet of vaspin action. Future studies will address the mechanisms underlying the biological activities and clarify, if vaspin-derived peptides may have potential as therapeutic agents for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Catherine A. Tindall
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Estelle Erkner
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - John T. Heiker
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Crist AM, Hinkle KM, Wang X, Moloney CM, Matchett BJ, Labuzan SA, Frankenhauser I, Azu NO, Liesinger AM, Lesser ER, Serie DJ, Quicksall ZS, Patel TA, Carnwath TP, DeTure M, Tang X, Petersen RC, Duara R, Graff-Radford NR, Allen M, Carrasquillo MM, Li H, Ross OA, Ertekin-Taner N, Dickson DW, Asmann YW, Carter RE, Murray ME. Transcriptomic analysis to identify genes associated with selective hippocampal vulnerability in Alzheimer's disease. Nat Commun 2021; 12:2311. [PMID: 33875655 PMCID: PMC8055900 DOI: 10.1038/s41467-021-22399-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Selective vulnerability of different brain regions is seen in many neurodegenerative disorders. The hippocampus and cortex are selectively vulnerable in Alzheimer's disease (AD), however the degree of involvement of the different brain regions differs among patients. We classified corticolimbic patterns of neurofibrillary tangles in postmortem tissue to capture extreme and representative phenotypes. We combined bulk RNA sequencing with digital pathology to examine hippocampal vulnerability in AD. We identified hippocampal gene expression changes associated with hippocampal vulnerability and used machine learning to identify genes that were associated with AD neuropathology, including SERPINA5, RYBP, SLC38A2, FEM1B, and PYDC1. Further histologic and biochemical analyses suggested SERPINA5 expression is associated with tau expression in the brain. Our study highlights the importance of embracing heterogeneity of the human brain in disease to identify disease-relevant gene expression.
Collapse
Affiliation(s)
- Angela M Crist
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kelly M Hinkle
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Isabelle Frankenhauser
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Paracelsus Medical Private University, Salzburg, Austria
| | - Nkem O Azu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Elizabeth R Lesser
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel J Serie
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tulsi A Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy P Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | | | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
7
|
Cell penetrating SERPINA5 (ProteinC inhibitor, PCI): More questions than answers. Semin Cell Dev Biol 2017; 62:187-193. [DOI: 10.1016/j.semcdb.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
|
8
|
Wahlmüller FC, Yang H, Furtmüller M, Geiger M. Regulation of the Extracellular SERPINA5 (Protein C Inhibitor) Penetration Through Cellular Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639251 DOI: 10.1007/5584_2017_60] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is generally accepted that the phospholipid bilayer of the cell membrane is impermeable for proteins and peptides and that these molecules require special mechanisms for their transport from the extra- to the intracellular space. Recently there is increasing evidence that certain proteins/peptides can also directly cross the phospholipid membrane. SERPINA5 (protein C inhibitor) is a secreted protease inhibitor with broad protease reactivity and wide tissue distribution. It binds glycosaminoglycans and certain phospoholipids, which can modulate its inhibitory activity. SERPINA5 has been shown to be internalized by platelets, granulocytes, HL-60 promyelocytic leukemia cells, and by Jurkat lymphoma cells. Once inside the cell it can translocate to the nucleus. There are several indications that SERPINA5 can directly cross the phospholipid bilayer of the cell membrane. In this review we will describe what is known so far about the conditions, as well as the cellular and molecular requirements for SERPINA5 translocation through the cell membrane and for its penetration of pure phospholipid vesicles.
Collapse
Affiliation(s)
- Felix C Wahlmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Hanjiang Yang
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Margareta Furtmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Margarethe Geiger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Martin EW, Buzza MS, Driesbaugh KH, Liu S, Fortenberry YM, Leppla SH, Antalis TM. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden. Oncotarget 2016; 6:33534-53. [PMID: 26392335 PMCID: PMC4741784 DOI: 10.18632/oncotarget.5214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 02/04/2023] Open
Abstract
The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent.
Collapse
Affiliation(s)
- Erik W Martin
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kathryn H Driesbaugh
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yolanda M Fortenberry
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen H Leppla
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases and the Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Yang H, Wahlmüller FC, Uhrin P, Baumgartner R, Mitulovic G, Sarg B, Geiger M, Zellner M. Proteome analysis of testis from infertile protein C inhibitor-deficient mice reveals novel changes in serpin processing and prostaglandin metabolism. Electrophoresis 2015; 36:2837-2840. [DOI: 10.1002/elps.201500218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 08/14/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hanjiang Yang
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research; Medical University of Vienna; Vienna Austria
| | - Felix Christof Wahlmüller
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research; Medical University of Vienna; Vienna Austria
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research; Medical University of Vienna; Vienna Austria
| | - Roland Baumgartner
- Center for Physiology and Pharmacology, Institute of Physiology; Medical University of Vienna; Vienna Austria
| | - Goran Mitulovic
- Clinical Department of Laboratory Medicine, Proteomics Core Facility; Medical University of Vienna; Vienna Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter; Innsbruck Medical University; Innsbruck Austria
| | - Margarethe Geiger
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research; Medical University of Vienna; Vienna Austria
| | - Maria Zellner
- Center for Physiology and Pharmacology, Institute of Physiology; Medical University of Vienna; Vienna Austria
| |
Collapse
|