1
|
Kalenderoglou IE, Nygaard A, Vogt CD, Turaev A, Pape T, Adams NBP, Newman AH, Loland CJ. Structural basis of vilazodone dual binding mode to the serotonin transporter. RESEARCH SQUARE 2025:rs.3.rs-5671197. [PMID: 39975905 PMCID: PMC11838746 DOI: 10.21203/rs.3.rs-5671197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The serotonin transporter (SERT) plays a pivotal role in regulating serotonin (5-HT) signaling and is a key target in treating psychiatric disorders. SERT has a binding site (S1) for 5-HT that also serves as a high-affinity binding site for antidepressants. The antidepressant vilazodone has been shown to inhibit SERT by binding to an allosteric site. Here, we present the cryo-EM structure of SERT with vilazodone bound to the S1 site and extending towards the allosteric site. We systematically dissect the vilazodone molecule into fragments and find that the terminal indole ring is the key determinant for its high affinity to SERT. Further, unlike typical Na+-dependent SERT-selective antidepressants, vilazodone exhibits a dissociation constant (K D) for purified SERT in the nanomolar range both in the presence or absence of Na+. We substantiate this binding mode by exploring the conformational impact of vilazodone binding to SERT using site-specific insertion of the fluorescent non-canonical amino acid Anap. Our results offer novel molecular insight into the distinct pharmacological profile of a clinically used polymodal antidepressant.
Collapse
Affiliation(s)
- Iris E Kalenderoglou
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Nygaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caleb D Vogt
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Anton Turaev
- NanoTemper Technologies, Floessegasse 4, 81369 Munich, Germany
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Claus J Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dilweg MA, Mocking TAM, Maragkoudakis P, van Westen GJP, Heitman LH, IJzerman AP, Jespers W, van der Es D. Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors. RSC Med Chem 2024:d4md00521j. [PMID: 39345718 PMCID: PMC11428037 DOI: 10.1039/d4md00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (8), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the N,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure-activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based 'transporter activity through receptor activation' assay. Moreover, all stereoisomers of the most potent compound (27) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to 8, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the R 2 position with a rigid cyclohexanol yielded lead compound 27, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of 27 revealed varying inhibitory potencies, favoring a trans-orientation of the N,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.
Collapse
Affiliation(s)
- Majlen A Dilweg
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Pantelis Maragkoudakis
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
- Oncode Institute 2333 CC Leiden The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daan van der Es
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
3
|
Ku T, Cao J, Won SJ, Guo J, Camacho-Hernandez GA, Okorom AV, Salomon KW, Lee KH, Loland CJ, Duff HJ, Shi L, Newman AH. Series of (([1,1'-Biphenyl]-2-yl)methyl)sulfinylalkyl Alicyclic Amines as Novel and High Affinity Atypical Dopamine Transporter Inhibitors with Reduced hERG Activity. ACS Pharmacol Transl Sci 2024; 7:515-532. [PMID: 38357284 PMCID: PMC10863442 DOI: 10.1021/acsptsci.3c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024]
Abstract
Currently, there are no FDA-approved medications for the treatment of psychostimulant use disorders (PSUD). We have previously discovered "atypical" dopamine transporter (DAT) inhibitors that do not display psychostimulant-like behaviors and may be useful as medications to treat PSUD. Lead candidates (e.g., JJC8-091, 1) have shown promising in vivo profiles in rodents; however, reducing hERG (human ether-à-go-go-related gene) activity, a predictor of cardiotoxicity, has remained a challenge. Herein, a series of 30 (([1,1'-biphenyl]-2-yl)methyl)sulfinylalkyl alicyclic amines was synthesized and evaluated for DAT and serotonin transporter (SERT) binding affinities. A subset of analogues was tested for hERG activity, and the IC50 values were compared to those predicted by our hERG QSAR models, which showed robust predictive power. Multiparameter optimization scores (MPO > 3) indicated central nervous system (CNS) penetrability. Finally, comparison of affinities in human DAT and its Y156F and Y335A mutants suggested that several compounds prefer an inward facing conformation indicating an atypical DAT inhibitor profile.
Collapse
Affiliation(s)
- Therese
C. Ku
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jianjing Cao
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Sung Joon Won
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jiqing Guo
- Faculty
of Medicine, Libin Institute, Calgary T2N 4N1, Canada
| | - Gisela A. Camacho-Hernandez
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amarachi V. Okorom
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Kristine Walloe Salomon
- Laboratory
for Membrane Protein Dynamics, Department of Neuroscience, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Kuo Hao Lee
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Claus J. Loland
- Laboratory
for Membrane Protein Dynamics, Department of Neuroscience, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Henry J. Duff
- Laboratory
for Membrane Protein Dynamics, Department of Neuroscience, Faculty
of Health and Medical Sciences, University
of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Lei Shi
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Molecular
Targets and Medications Discovery Branch, National Institute on Drug
Abuse–Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Okorom AV, Camacho-Hernandez GA, Salomon K, Lee KH, Ku TC, Cao J, Won SJ, Friedman J, Lam J, Paule J, Rais R, Klein B, Xi ZX, Shi L, Loland CJ, Newman AH. Modifications to 1-(4-(2-Bis(4-fluorophenyl)methyl)sulfinyl)alkyl Alicyclic Amines That Improve Metabolic Stability and Retain an Atypical DAT Inhibitor Profile. J Med Chem 2024; 67:709-727. [PMID: 38117239 PMCID: PMC11959496 DOI: 10.1021/acs.jmedchem.3c02037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.
Collapse
Affiliation(s)
- Amarachi V. Okorom
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Gisela Andrea Camacho-Hernandez
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Kristine Salomon
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kuo Hao Lee
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Therese C. Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Sung Joon Won
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jacob Friedman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - James Paule
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Benjamin Klein
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Claus J. Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
5
|
Pugh CF, DeVree BT, Schmidt SG, Loland CJ. Pharmacological Characterization of Purified Full-Length Dopamine Transporter from Drosophila melanogaster. Cells 2022; 11:cells11233811. [PMID: 36497070 PMCID: PMC9740255 DOI: 10.3390/cells11233811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The dopamine transporter (DAT) is a member of the neurotransmitter:sodium symporter (NSS) family, mediating the sodium-driven reuptake of dopamine from the extracellular space thereby terminating dopaminergic neurotransmission. Our current structural understanding of DAT is derived from the resolutions of DAT from Drosophila melanogaster (dDAT). Despite extensive structural studies of purified dDAT in complex with a variety of antidepressants, psychostimulants and its endogenous substrate, dopamine, the molecular pharmacology of purified, full length dDAT is yet to be elucidated. In this study, we functionally characterized purified, full length dDAT in detergent micelles using radioligand binding with the scintillation proximity assay. We elucidate the consequences of Na+ and Cl- binding on [3H]nisoxetine affinity and use this to evaluate the binding profiles of substrates and inhibitors to the transporter. Additionally, the technique allowed us to directly determine a equilibrium binding affinity (Kd) for [3H]dopamine to dDAT. To compare with a more native system, the affinities of specified monoamines and inhibitors was determined on dDAT, human DAT and human norepinephrine transporter expressed in COS-7 cells. With our gathered data, we established a pharmacological profile for purified, full length dDAT that will be useful for subsequent biophysical studies using dDAT as model protein for the mammalian NSS family of proteins.
Collapse
|
6
|
Targowska-Duda KM, Budzynska B, Michalak A, Wnorowski A, Loland CJ, Maj M, Manetti D, Romanelli MN, Jozwiak K, Biala G, Arias HR. Type I and type II positive allosteric modulators of α7 nicotinic acetylcholine receptors induce antidepressant-like activity in mice by a mechanism involving receptor potentiation but not neurotransmitter reuptake inhibition. Correlation with mTOR intracellular pathway activation. Eur Neuropsychopharmacol 2021; 52:31-47. [PMID: 34237657 DOI: 10.1016/j.euroneuro.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study is to determine whether type I and type II positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChRs) induce antidepressant-like activity in mice after acute, subchronic, and chronic treatments, and to assess whether α7-PAMs inhibit neurotransmitter transporters and activate mTOR (mammalian target of rapamycin) and/or ERK (extracellular signal-regulated protein kinases) signaling. The forced swim (FST) and tail suspension (TST) test results indicated that NS-1738 (type I PAM), PNU-120596 and PAM-2 (type II PAMs) induce antidepressant-like activity after subchronic treatment, whereas PAM-2 was also active after chronic treatment. Methyllycaconitine (α7-antagonist) inhibited the observed effects, highlighting the involvement of α7 nAChRs in this process. Drug interaction studies showed synergism between PAM-2 and bupropion (antidepressant), but not between PAM-2 and DMXBA (α7-agonist). The studied PAMs showed no high affinity (< 1 µM) for the human dopamine, serotonin, and noradrenaline transporters, suggesting that transporter inhibition is not the underlying mechanism for the observed activity. To assess whether mTOR and ERK signaling pathways are involved in the activity of α7-PAMs, the phosphorylation status of key signaling nodes was determined in prefrontal cortex and hippocampus from mice chronically treated with PAM-2. In conclusion, the antidepressant-like activity of type I and type II PAMs is mediated by a mechanism involving α7 potentiation but not α7 desensitization or neurotransmitter transporter blockade, and is correlated with activation of both mTOR and ERK signaling pathways. These results support the view that α7-PAMs might be clinically used to ameliorate depression disorders .
Collapse
Affiliation(s)
| | - Barbara Budzynska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Poland
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Denmark
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Poland
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Italy
| | | | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Poland
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, Oklahoma, USA.
| |
Collapse
|
7
|
Mutations of Human DopamineTransporter at Tyrosine88, Aspartic Acid206, and Histidine547 Influence Basal and HIV-1 Tat-inhibited Dopamine Transport. J Neuroimmune Pharmacol 2021; 16:854-869. [PMID: 33537927 PMCID: PMC8329121 DOI: 10.1007/s11481-021-09984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
HIV-1 transactivator of transcription (Tat) has a great impact on the development of HIV-1 associated neurocognitive disorders through disrupting dopamine transmission. This study determined the mutational effects of human dopamine transporter (hDAT) on basal and Tat-induced inhibition of dopamine transport. Compared to wild-type hDAT, the maximal velocity (Vmax) of [3H]dopamine uptake was decreased in D381L and Y88F/D206L/H547A, increased in D206L/H547A, and unaltered in D206L. Recombinant TatR1 − 86 inhibited dopamine uptake in wild-type hDAT, which was attenuated in either DAT mutants (D206L, D206L/H547A, and Y88F/D206L/H547A) or mutated TatR1 − 86 (K19A and C22G), demonstrating perturbed Tat-DAT interaction. Mutational effects of hDAT on the transporter conformation were evidenced by attenuation of zinc-induced increased [3H]WIN35,428 binding in D206L/H547A and Y88F/D206A/H547A and enhanced basal MPP+ efflux in D206L/H547A. H547A-induced outward-open transport conformational state was further validated by enhanced accessibility to MTSET ([2-(trimethylammonium)ethyl]-methanethiosulfonate) of an inserted cysteine (I159C) on a hDAT background.. Furthermore, H547A displayed an increase in palmitoylation inhibitor-induced inhibition of dopamine uptake relative to wide-type hDAT, indicating a change in basal palmitoylation in H547A. These results demonstrate that Y88F, D206L, and H547A attenuate Tat inhibition while preserving DA uptake, providing insights into identifying targets for improving DAT-mediated dopaminergic dysregulation.
Collapse
|
8
|
Slack RD, Ku T, Cao J, Giancola J, Bonifazi A, Loland CJ, Gadiano A, Lam J, Rais R, Slusher BS, Coggiano M, Tanda G, Newman AH. Structure-Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability. J Med Chem 2020; 63:2343-2357. [PMID: 31661268 PMCID: PMC9617638 DOI: 10.1021/acs.jmedchem.9b01188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in preclinical models of psychostimulant abuse. In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. While further development of 3b is ongoing, diastereomeric separation, as well as improvements in potency and pharmacokinetics were desirable for discovering pipeline drug candidates. Thus, a series of bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines, where the piperazine-2-propanol scaffold was modified, were designed, synthesized, and evaluated for binding affinities at DAT, as well as the serotonin transporter and σ1 receptors. Within the series, 14a showed improved DAT affinity (Ki = 23 nM) over 3b (Ki = 230 nM), moderate metabolic stability in human liver microsomes, and a hERG/DAT affinity ratio = 28. While 14a increased locomotor activity relative to vehicle, it was significantly lower than activity produced by cocaine. These results support further investigation of 14a as a potential treatment for psychostimulant use disorders.
Collapse
Affiliation(s)
- Rachel D. Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - JoLynn Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Claus J. Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alexandra Gadiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Mark Coggiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Gianluigi Tanda
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
9
|
Rath P, Sharpe T, Hiller S. The electrostatic core of the outer membrane protein X from E. coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183031. [PMID: 31374213 DOI: 10.1016/j.bbamem.2019.183031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 07/25/2019] [Indexed: 11/29/2022]
Abstract
Electrostatic side chain contacts can contribute substantial interaction energy terms to the stability of proteins. The impact of electrostatic interactions on the structure and architecture of outer membrane proteins is however not well studied compared to soluble proteins. Here, we report the results of a systematic study of all charged side chains of the E. coli outer membrane protein X (OmpX). The data identify three distinct salt-bridge clusters in the core of OmpX that contribute significantly to protein stability in dodecylphosphocholine detergent micelles. The three clusters form an "electrostatic core" of the membrane protein OmpX, corresponding in its architectural role to the hydrophobic core of soluble proteins. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Parthasarathi Rath
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
10
|
Nielsen AK, Möller IR, Wang Y, Rasmussen SGF, Lindorff-Larsen K, Rand KD, Loland CJ. Substrate-induced conformational dynamics of the dopamine transporter. Nat Commun 2019; 10:2714. [PMID: 31221956 PMCID: PMC6586795 DOI: 10.1038/s41467-019-10449-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 05/09/2019] [Indexed: 02/02/2023] Open
Abstract
The dopamine transporter is a member of the neurotransmitter:sodium symporters (NSSs), which are responsible for termination of neurotransmission through Na+-driven reuptake of neurotransmitter from the extracellular space. Experimental evidence elucidating the coordinated conformational rearrangements related to the transport mechanism has so far been limited. Here we probe the global Na+- and dopamine-induced conformational dynamics of the wild-type Drosophila melanogaster dopamine transporter using hydrogen-deuterium exchange mass spectrometry. We identify Na+- and dopamine-induced changes in specific regions of the transporter, suggesting their involvement in protein conformational transitions. Furthermore, we detect ligand-dependent slow cooperative fluctuations of helical stretches in several domains of the transporter, which could be a molecular mechanism that assists in the transporter function. Our results provide a framework for understanding the molecular mechanism underlying the function of NSSs by revealing detailed insight into the state-dependent conformational changes associated with the alternating access model of the dopamine transporter.
Collapse
Affiliation(s)
- Anne Kathrine Nielsen
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N, Denmark
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Ingvar R Möller
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N, Denmark
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Yong Wang
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Søren G F Rasmussen
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
11
|
Hong WC, Wasko MJ, Wilkinson DS, Hiranita T, Li L, Hayashi S, Snell DB, Madura JD, Surratt CK, Katz JL. Dopamine Transporter Dynamics of N-Substituted Benztropine Analogs with Atypical Behavioral Effects. J Pharmacol Exp Ther 2018; 366:527-540. [PMID: 29945932 PMCID: PMC6102189 DOI: 10.1124/jpet.118.250498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
Atypical dopamine transporter (DAT) inhibitors, despite high DAT affinity, do not produce the psychomotor stimulant and abuse profile of standard DAT inhibitors such as cocaine. Proposed contributing features for those differences include off-target actions, slow onsets of action, and ligand bias regarding DAT conformation. Several 3α-(4',4''-difluoro-diphenylmethoxy)tropanes were examined, including those with the following substitutions: N-(indole-3''-ethyl)- (GA1-69), N-(R)-2''-amino-3''-methyl-n-butyl- (GA2-50), N-2''aminoethyl- (GA2-99), and N-(cyclopropylmethyl)- (JHW013). These compounds were previously reported to have rapid onset of behavioral effects and were presently evaluated pharmacologically alone or in combination with cocaine. DAT conformational mode was assessed by substituted-cysteine accessibility and molecular dynamics (MD) simulations. As determined by substituted-cysteine alkylation, all BZT analogs except GA2-99 showed bias for a cytoplasmic-facing DAT conformation, whereas cocaine stabilized the extracellular-facing conformation. MD simulations suggested that several analog-DAT complexes formed stable R85-D476 "outer gate" bonds that close the DAT to extracellular space. GA2-99 diverged from this pattern, yet had effects similar to those of other atypical DAT inhibitors. Apparent DAT association rates of the BZT analogs in vivo were slower than that for cocaine. None of the compounds was self-administered or stimulated locomotion, and each blocked those effects of cocaine. The present findings provide more detail on ligand-induced DAT conformations and indicate that aspects of DAT conformation other than "open" versus "closed" may facilitate predictions of the actions of DAT inhibitors and may promote rational design of potential treatments for psychomotor-stimulant abuse.
Collapse
Affiliation(s)
- Weimin C Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Michael J Wasko
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Derek S Wilkinson
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Takato Hiranita
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Libin Li
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Shuichiro Hayashi
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - David B Snell
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Jeffry D Madura
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Christopher K Surratt
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| | - Jonathan L Katz
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana (W.C.H.); Division of Pharmaceutical Sciences (M.J.W., C.K.S.) and Department of Chemistry and Biochemistry (J.D.M.), Duquesne University, Pittsburgh; and Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (D.S.W., T.H., L.L., S.H., D.B.S., J.L.K.)
| |
Collapse
|
12
|
Helix α-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family. Sci Rep 2018; 8:10331. [PMID: 29985464 PMCID: PMC6037675 DOI: 10.1038/s41598-018-28753-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis insecticidal Cry toxins break down larval midgut-cells after forming pores. The 3D-structures of Cry4Ba and Cry5Ba revealed a trimeric-oligomer after cleavage of helices α-1 and α-2a, where helix α-3 is extended and made contacts with adjacent monomers. Molecular dynamic simulations of Cry1Ab-oligomer model based on Cry4Ba-coordinates showed that E101 forms a salt-bridge with R99 from neighbor monomer. An additional salt bridge was identified in the trimeric-Cry5Ba, located at the extended helix α-3 in the region corresponding to the α-2b and α-3 loop. Both salt-bridges were analyzed by site directed mutagenesis. Single-point mutations in the Lepidoptera-specific Cry1Ab and Cry1Fa toxins were affected in toxicity, while reversed double-point mutant partially recovered the phenotype, consistent with a critical role of these salt-bridges. The single-point mutations in the salt-bridge at the extended helix α-3 of the nematicidal Cry5Ba were also non-toxic. The incorporation of this additional salt bridge into the nontoxic Cry1Ab-R99E mutant partially restored oligomerization and toxicity, supporting that the loop between α-2b and α-3 forms part of an extended helix α-3 upon oligomerization of Cry1 toxins. Overall, these results highlight the role in toxicity of salt-bridge formation between helices α-3 of adjacent monomers supporting a conformational change in helix α-3.
Collapse
|
13
|
An Intramolecular Salt Bridge in Bacillus thuringiensis Cry4Ba Toxin Is Involved in the Stability of Helix α-3, Which Is Needed for Oligomerization and Insecticidal Activity. Appl Environ Microbiol 2017; 83:AEM.01515-17. [PMID: 28802270 DOI: 10.1128/aem.01515-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 01/30/2023] Open
Abstract
Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin.IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity.
Collapse
|
14
|
Cao J, Slack RD, Bakare OM, Burzynski C, Rais R, Slusher BS, Kopajtic T, Bonifazi A, Ellenberger MP, Yano H, He Y, Bi GH, Xi ZX, Loland CJ, Newman AH. Novel and High Affinity 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues as Atypical Dopamine Transporter Inhibitors. J Med Chem 2016; 59:10676-10691. [PMID: 27933960 DOI: 10.1021/acs.jmedchem.6b01373] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of pharmacotherapeutic treatments of psychostimulant abuse has remained a challenge, despite significant efforts made toward relevant mechanistic targets, such as the dopamine transporter (DAT). The atypical DAT inhibitors have received attention due to their promising pharmacological profiles in animal models of cocaine and methamphetamine abuse. Herein, we report a series of modafinil analogues that have an atypical DAT inhibitor profile. We extended SAR by chemically manipulating the oxidation states of the sulfoxide and the amide functional groups, halogenating the phenyl rings, and/or functionalizing the terminal nitrogen with substituted piperazines, resulting in several novel leads such as 11b, which demonstrated high DAT affinity (Ki = 2.5 nM) and selectivity without producing concomitant locomotor stimulation in mice, as compared to cocaine. These results are consistent with an atypical DAT inhibitor profile and suggest that 11b may be a potential lead for development as a psychostimulant abuse medication.
Collapse
Affiliation(s)
- Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rachel D Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Oluyomi M Bakare
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Caitlin Burzynski
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States.,Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine , 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine , 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine , 855 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Theresa Kopajtic
- Psychobiology Section, Molecular Neuropsychiatry Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P Ellenberger
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Yi He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Claus J Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , DK-2200 Copenhagen, Denmark
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health , 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
15
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
16
|
Chloride requirement for monoamine transporters. Pflugers Arch 2016; 468:503-11. [PMID: 26794730 DOI: 10.1007/s00424-015-1783-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
This review focuses on the Cl(-) requirement for dopamine, serotonin, and norepinephrine (DA, 5-HT, and NE) transport and induced current via the transporters for these transmitters, DAT, SERT, and NET. Indirect evidence exists for the passage of Cl(-) ions through monoamine transporters; however, direct evidence is sparse. An unanswered question is why in some preparations, notably native neurons, it appears that Cl(-) ions carry the current through DAT, whereas in heterologous expression systems Na(+) ions carry the current often referred to as the uncoupled current. It is suggested that different functional states in monoamine transporters represent conformational states that carry dominantly Cl(-) or Na(+). Structures of monoamine transporters contribute enormously to structure-function relationships; however, thus far no structural features support the functionally relevant ionic currents that are known to exist in monoamine transporters.
Collapse
|
17
|
Cheng MH, Bahar I. Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter. Structure 2015; 23:2171-81. [PMID: 26481814 DOI: 10.1016/j.str.2015.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 01/16/2023]
Abstract
Dopamine transporters (DATs) control neurotransmitter dopamine (DA) homeostasis by reuptake of excess DA, assisted by sodium and chloride ions. The recent resolution of DAT structure (dDAT) from Drosophila permits us for the first time to directly view the sequence of events involved in DA reuptake in human DAT (hDAT) using homology modeling and full-atomic microseconds accelerated simulations. Major observations are spontaneous closure of extracellular gates prompted by DA binding; stabilization of a holo-occluded intermediate; disruption of N82-N353 hydrogen bond and exposure to intracellular (IC) water triggered by Na2 dislocation; redistribution of a network of salt bridges at the IC surface in the inward-facing state; concerted tilting of IC-exposed helices to enable the release of Na(+) and Cl(-) ions; and DA release after protonation of D79. The observed time-resolved interactions confirm the conserved dynamics of LeuT-fold family, while providing insights into the mechanistic role of specific residues in hDAT.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3064 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
18
|
Mortensen OV, Kortagere S. Designing modulators of monoamine transporters using virtual screening techniques. Front Pharmacol 2015; 6:223. [PMID: 26483692 PMCID: PMC4586420 DOI: 10.3389/fphar.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
The plasma-membrane monoamine transporters (MATs), including the serotonin (SERT), norepinephrine (NET) and dopamine (DAT) transporters, serve a pivotal role in limiting monoamine-mediated neurotransmission through the reuptake of their respective monoamine neurotransmitters. The transporters are the main target of clinically used psychostimulants and antidepressants. Despite the availability of several potent and selective MAT substrates and inhibitors the continuing need for therapeutic drugs to treat brain disorders involving aberrant monoamine signaling provides a compelling reason to identify novel ways of targeting and modulating the MATs. Designing novel modulators of MAT function have been limited by the lack of three dimensional structure information of the individual MATs. However, crystal structures of LeuT, a bacterial homolog of MATs, in a substrate-bound occluded, substrate-free outward-open, and an apo inward-open state and also with competitive and non-competitive inhibitors have been determined. In addition, several structures of the Drosophila DAT have also been resolved. Together with computational modeling and experimental data gathered over the past decade, these structures have dramatically advanced our understanding of several aspects of SERT, NET, and DAT transporter function, including some of the molecular determinants of ligand interaction at orthosteric substrate and inhibitor binding pockets. In addition progress has been made in the understanding of how allosteric modulation of MAT function can be achieved. Here we will review all the efforts up to date that has been made through computational approaches employing structural models of MATs to design small molecule modulators to the orthosteric and allosteric sites using virtual screening techniques.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine , Philadelphia, PA, USA
| |
Collapse
|
19
|
Cheng MH, Block E, Hu F, Cobanoglu MC, Sorkin A, Bahar I. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding. Front Neurol 2015; 6:134. [PMID: 26106364 PMCID: PMC4460958 DOI: 10.3389/fneur.2015.00134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022] Open
Abstract
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ethan Block
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Feizhuo Hu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing , China
| | - Murat Can Cobanoglu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|