1
|
Poore CP, Yang J, Wei S, Fhu CK, Bichler Z, Wang J, Soong TW, Liao P. Enhanced isradipine sensitivity in vascular smooth muscle cells due to hypoxia-induced Ca v1.2 splicing and RbFox1/Fox2 downregulation. FEBS J 2024; 291:4265-4285. [PMID: 38794806 DOI: 10.1111/febs.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Calcium influx via the L-type voltage-gated Cav1.2 calcium channel in smooth muscle cells regulates vascular contraction. Calcium channel blockers (CCBs) are widely used to treat hypertension by inhibiting Cav1.2 channels. Using the vascular smooth muscle cell line, A7r5 and primary culture of cerebral vascular smooth muscle cells, we found that the expression and function of Cav1.2 channels are downregulated during hypoxia. Furthermore, hypoxia induces structural changes in Cav1.2 channels via alternative splicing. The expression of exon 9* is upregulated, whereas exon 33 is downregulated. Such structural alterations of Cav1.2 channels are caused by the decreased expression of RNA-binding proteins RNA-binding protein fox-1 homolog 1 and 2 (RbFox1 and RbFox2). Overexpression of RbFox1 and RbFox2 prevents hypoxia-induced exon 9* inclusion and exon 33 exclusion. Importantly, such structural alterations of the Cav1.2 channel partly contribute to the enhanced sensitivity of Cav1.2 to isradipine (a CCB) under hypoxia. Overexpression of RbFox1 and RbFox2 successfully reduces isradipine sensitivity in hypoxic smooth muscle cells. Our results suggest a new strategy to manage ischemic diseases such as stroke and myocardial infarction.
Collapse
MESH Headings
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- RNA Splicing Factors/genetics
- RNA Splicing Factors/metabolism
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Alternative Splicing
- Down-Regulation
- Rats
- Cell Hypoxia/genetics
- Exons/genetics
- Mice
- Calcium Channel Blockers/pharmacology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Chee Kong Fhu
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| | - Zoë Bichler
- Neurobehavioural Phenotyping Core, Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore City, Singapore
| |
Collapse
|
2
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Chen B, Wei S, Low SW, Poore CP, Lee ATH, Nilius B, Liao P. TRPM4 Blocking Antibody Protects Cerebral Vasculature in Delayed Stroke Reperfusion. Biomedicines 2023; 11:biomedicines11051480. [PMID: 37239151 DOI: 10.3390/biomedicines11051480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Reperfusion therapy for acute ischemic stroke aims to restore the blood flow of occluded blood vessels. However, successful recanalization is often associated with disruption of the blood-brain barrier, leading to reperfusion injury. Delayed recanalization increases the risk of severe reperfusion injury, including severe cerebral edema and hemorrhagic transformation. The TRPM4-blocking antibody M4P has been shown to alleviate reperfusion injury and improve functional outcomes in animal models of early stroke reperfusion. In this study, we examined the role of M4P in a clinically relevant rat model of delayed stroke reperfusion in which the left middle cerebral artery was occluded for 7 h. To mimic the clinical scenario, M4P or control IgG was administered 1 h before recanalization. Immunostaining showed that M4P treatment improved vascular morphology after stroke. Evans blue extravasation demonstrated attenuated vascular leakage following M4P treatment. With better vascular integrity, cerebral perfusion was improved, leading to a reduction of infarct volume and animal mortality rate. Functional outcome was evaluated by the Rotarod test. As more animals with severe injuries died during the test in the control IgG group, we observed no difference in functional outcomes in the surviving animals. In conclusion, we identified the potential of TRPM4 blocking antibody M4P to ameliorate vascular injury during delayed stroke reperfusion. If combined with reperfusion therapy, M4P has the potential to improve current stroke management.
Collapse
Affiliation(s)
- Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Andy Thiam-Huat Lee
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
4
|
Abstract
The CACNA1C gene encodes the pore-forming subunit of the CaV1.2 L-type Ca2+ channel, a critical component of membrane physiology in multiple tissues, including the heart, brain, and immune system. As such, mutations altering the function of these channels have the potential to impact a wide array of cellular functions. The first mutations identified within CACNA1C were shown to cause a severe, multisystem disorder known as Timothy syndrome (TS), which is characterized by neurodevelopmental deficits, long-QT syndrome, life-threatening cardiac arrhythmias, craniofacial abnormalities, and immune deficits. Since this initial description, the number and variety of disease-associated mutations identified in CACNA1C have grown tremendously, expanding the range of phenotypes observed in affected patients. CACNA1C channelopathies are now known to encompass multisystem phenotypes as described in TS, as well as more selective phenotypes where patients may exhibit predominantly cardiac or neurological symptoms. Here, we review the impact of genetic mutations on CaV1.2 function and the resultant physiological consequences.
Collapse
Affiliation(s)
- Kevin G Herold
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John W Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivy E Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Diminished Rbfox1 increases vascular constriction by dynamically regulating alternative splicing of CaV1.2 calcium channel in hypertension. Clin Sci (Lond) 2022; 136:803-817. [PMID: 35543237 DOI: 10.1042/cs20220226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Calcium influx from depolarized CaV1.2 calcium channels triggers the contraction of vascular smooth muscle cells (VSMCs), which is important for maintaining vascular myogenic tone and blood pressure. The function of CaV1.2 channel can be subtly modulated by alternative splicing (AS), and its aberrant splicing involves in the pathogenesis of multiple cardiovascular diseases. The RNA binding protein Rbfox1 is reported to regulate the AS events of CaV1.2 channel in the neuronal development, but its potential roles in vascular CaV1.2 channels and vasoconstriction remain undefined. Here, we detect Rbfox1 is expressed in rat vascular smooth muscles. Moreover, the protein level of Rbfox1 is dramatically decreased in the hypertensive small arteries from spontaneously hypertensive rats in comparison to normotensive ones from Wistar-Kyoto rats. In VSMCs, Rbfox1 could dynamically regulate the AS of CaV1.2 exons 9* and 33. By whole-cell patch clamp, we identify knockdown of Rbfox1 induces the hyperpolarization of CaV1.2 current-voltage relationship curve in VSMCs. Furthermore, siRNA-mediated knockdown of Rbfox1 increases the K+-induced constriction of rat mesenteric arteries. In summary, our results indicate Rbfox1 modulates vascular constriction by dynamically regulating CaV1.2 alternative exons 9* and 33. Therefore, our work elucidates the underlying mechanisms for CaV1.2 channels regulation and provides a potential therapeutic target for hypertension.
Collapse
|
6
|
Montañés-Agudo P, Casini S, Aufiero S, Ernault AC, van der Made I, Pinto YM, Remme CA, Creemers EE. Inhibition of minor intron splicing reduces Na+ and Ca2+ channel expression and function in cardiomyocytes. J Cell Sci 2021; 135:273616. [PMID: 34859816 PMCID: PMC8767276 DOI: 10.1242/jcs.259191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic genomes contain a tiny subset of ‘minor class’ introns with unique sequence elements that require their own splicing machinery. These minor introns are present in certain gene families with specific functions, such as voltage-gated Na+ and voltage-gated Ca2+ channels. Removal of minor introns by the minor spliceosome has been proposed as a post-transcriptional regulatory layer, which remains unexplored in the heart. Here, we investigate whether the minor spliceosome regulates electrophysiological properties of cardiomyocytes by knocking down the essential minor spliceosome small nuclear snRNA component U6atac in neonatal rat ventricular myocytes. Loss of U6atac led to robust minor intron retention within Scn5a and Cacna1c, resulting in reduced protein levels of Nav1.5 and Cav1.2 channels. Functional consequences were studied through patch-clamp analysis, and revealed reduced Na+ and L-type Ca2+ currents after loss of U6atac. In conclusion, minor intron splicing modulates voltage-dependent ion channel expression and function in cardiomyocytes. This may be of particular relevance in situations in which minor splicing activity changes, such as in genetic diseases affecting minor spliceosome components, or in acquired diseases in which minor spliceosome components are dysregulated, such as heart failure. Summary: Knockdown of minor spliceosome component U6atac in cardiomyocytes reveals that expression of the Na+ channel Scn5a and the L-type Ca2+ channel Cacna1c critically depend on minor intron splicing.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Casini
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Simona Aufiero
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Auriane C Ernault
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Yigal M Pinto
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Esther E Creemers
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Lei J, Liu X, Song M, Zhou Y, Fan J, Shen X, Xu X, Kapoor I, Zhu G, Wang (王觉进) J. Aberrant Exon 8/8a Splicing by Downregulated PTBP (Polypyrimidine Tract-Binding Protein) 1 Increases Ca V1.2 Dihydropyridine Resistance to Attenuate Vasodilation. Arterioscler Thromb Vasc Biol 2020; 40:2440-2453. [PMID: 32787518 DOI: 10.1161/atvbaha.120.315010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Calcium channel blockers, such as dihydropyridines, are commonly used to inhibit enhanced activity of vascular CaV1.2 channels in hypertension. However, patients who are insensitive to such treatments develop calcium channel blocker-resistant hypertension. The function of CaV1.2 channel is diversified by alternative splicing, and the splicing factor PTBP (polypyrimidine tract-binding protein) 1 influences the utilization of mutually exclusive exon 8/8a of the CaV1.2 channel during neuronal development. Nevertheless, whether and how PTBP1 makes a role in the calcium channel blocker sensitivity of vascular CaV1.2 channels, and calcium channel blocker-induced vasodilation remains unknown. Approach and Results: We detected high expression of PTBP1 and, inversely, low expression of exon 8a in CaV1.2 channels (CaV1.2E8a) in rat arteries. In contrast, the opposite expression patterns were observed in brain and heart tissues. In comparison to normotensive rats, the expressions of PTBP1 and CaV1.2E8a channels were dysregulated in mesenteric arteries of hypertensive rats. Notably, PTBP1 expression was significantly downregulated, and CaV1.2E8a channels were aberrantly increased in dihydropyridine-resistant arteries compared with dihydropyridine-sensitive arteries of rats and human. In rat vascular smooth muscle cells, PTBP1 knockdown resulted in shifting of CaV1.2 exon 8 to 8a. Using patch-clamp recordings, we demonstrated a concomitant reduction of sensitivity of CaV1.2 channels to nifedipine, due to the higher expression of CaV1.2E8a isoform. In vascular myography experiments, small interfering RNA-mediated knockdown of PTBP1 attenuated nifedipine-induced vasodilation of rat mesenteric arteries. CONCLUSIONS PTBP1 finely modulates the sensitivities of CaV1.2 channels to dihydropyridine by shifting the utilization of exon 8/8a and resulting in changes of responses in dihydropyridine-induced vasodilation.
Collapse
Affiliation(s)
- Jianzhen Lei
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Xiaoxin Liu
- Shanghai Chest Hospital, Shanghai Jiaotong University, China (X.L.)
| | - Miaomiao Song
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Yingying Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Jia Fan
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Xiaowei Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (X.S., X.X.)
| | - Xiaohan Xu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (X.S., X.X.)
| | - Isha Kapoor
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Guoqing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| | - Juejin Wang (王觉进)
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (J.L., M.S., Y.Z., J.F., G.Z., J.W.)
| |
Collapse
|
8
|
Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch 2020; 472:653-667. [PMID: 32435990 DOI: 10.1007/s00424-020-02398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.
Collapse
|
9
|
Non-Invasive Multimodality Imaging Directly Shows TRPM4 Inhibition Ameliorates Stroke Reperfusion Injury. Transl Stroke Res 2018; 10:91-103. [PMID: 29569041 PMCID: PMC6327008 DOI: 10.1007/s12975-018-0621-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/22/2018] [Accepted: 03/08/2018] [Indexed: 10/30/2022]
Abstract
The transient receptor potential melastatin 4 (TRPM4) channel has been suggested to play a key role in the treatment of ischemic stroke. However, in vivo evaluation of TRPM4 channel, in particular by direct channel suppression, is lacking. In this study, we used multimodal imaging to assess edema formation and quantify the amount of metabolically functional brain salvaged after a rat model of stroke reperfusion. TRPM4 upregulation in endothelium emerges as early as 2 h post-stroke induction. Expression of TRPM4 channel was suppressed directly in vivo by treatment with siRNA; scrambled siRNA was used as a control. T2-weighted MRI suggests that TRPM4 inhibition successfully reduces edema by 30% and concomitantly salvages functionally active brain, measured by 18F-FDG-PET. These in vivo imaging results correlate well with post-mortem 2,3,5-triphenyltetrazolium chloride (TTC) staining which exhibits a 34.9% reduction in infarct volume after siRNA treatment. Furthermore, in a permanent stroke model, large areas of brain tissue displayed both edema and significant reductions in metabolic activity which was not shown in transient models with or without TRPM4 inhibition, indicating that tissue salvaged by TRPM4 inhibition during stroke reperfusion may survive. Evans Blue extravasation and hemoglobin quantification in the ipsilateral hemisphere were greatly reduced, suggesting that TRPM4 inhibition can improve BBB integrity after ischemic stroke reperfusion. Our results support the use of TRPM4 blocker for early stroke reperfusion.
Collapse
|
10
|
Alternative Splicing of L-type Ca V1.2 Calcium Channels: Implications in Cardiovascular Diseases. Genes (Basel) 2017; 8:genes8120344. [PMID: 29186814 PMCID: PMC5748662 DOI: 10.3390/genes8120344] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/09/2017] [Accepted: 11/21/2017] [Indexed: 01/28/2023] Open
Abstract
L-type CaV1.2 calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alteration of CaV1.2 channel function has been implicated in multiple cardiovascular diseases, such as hypertension and cardiac hypertrophy. Alternative splicing is a post-transcriptional mechanism that expands CaV1.2 channel structures to modify function, pharmacological and biophysical property such as calcium/voltage-dependent inactivation (C/VDI), or to influence its post-translational modulation by interacting proteins such as Galectin-1. Alternative splicing has generated functionally diverse CaV1.2 isoforms that can be developmentally regulated in the heart, or under pathophysiological conditions such as in heart failure. More importantly, alternative splicing of certain exons of CaV1.2 has been reported to be regulated by splicing factors such as RNA-binding Fox-1 homolog 1/2 (Rbfox 1/2), polypyrimidine tract-binding protein (PTBP1) and RNA-binding motif protein 20 (RBM20). Understanding how CaV1.2 channel function is remodelled in disease will provide better information to guide the development of more targeted approaches to discover therapeutic agents for cardiovascular diseases.
Collapse
|
11
|
Zhou Y, Fan J, Zhu H, Ji L, Fan W, Kapoor I, Wang Y, Wang Y, Zhu G, Wang J. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of Ca V1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension. Hypertension 2017; 70:1183-1192. [PMID: 28993448 DOI: 10.1161/hypertensionaha.117.09301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/26/2017] [Accepted: 09/11/2017] [Indexed: 01/12/2023]
Abstract
Calcium influx from activated voltage-gated calcium channel CaV1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of CaV1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the CaV1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular CaV1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of CaV1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of CaV1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular CaV1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular CaV1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies.
Collapse
Affiliation(s)
- Yingying Zhou
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Jia Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Huayuan Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Li Ji
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Wenyong Fan
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Isha Kapoor
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yue Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Yuan Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Guoqing Zhu
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.)
| | - Juejin Wang
- From the Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Jiangsu, China (Y.Z., J.F., L.J., W.F., Yue Wang, Yuan Wang, G.Z., J.W.); Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu, China (H.Z.); and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, OH (I.K.).
| |
Collapse
|
12
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 09/29/2023] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
13
|
Buonarati OR, Henderson PB, Murphy GG, Horne MC, Hell JW. Proteolytic processing of the L-type Ca 2+ channel alpha 11.2 subunit in neurons. F1000Res 2017; 6:1166. [PMID: 28781760 PMCID: PMC5531164 DOI: 10.12688/f1000research.11808.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background: The L-type Ca2+ channel Cav1.2 is a prominent regulator of neuronal excitability, synaptic plasticity, and gene expression. The central element of Cav1.2 is the pore-forming α 11.2 subunit. It exists in two major size forms, whose molecular masses have proven difficult to precisely determine. Recent work suggests that α 11.2 is proteolytically cleaved between the second and third of its four pore-forming domains (Michailidis et al,. 2014). Methods: To better determine the apparent molecular masses (M R)of the α 11.2 size forms, extensive systematic immunoblotting of brain tissue as well as full length and C-terminally truncated α 11.2 expressed in HEK293 cells was conducted using six different region-specific antibodies against α 11.2. Results: The full length form of α 11.2 migrated, as expected, with an apparent M R of ~250 kDa. A shorter form of comparable prevalence with an apparent M R of ~210 kDa could only be detected in immunoblots probed with antibodies recognizing α 11.2 at an epitope 400 or more residues upstream of the C-terminus. Conclusions: The main two size forms of α 11.2 are the full length form and a shorter form, which lacks ~350 distal C-terminal residues. Midchannel cleavage as suggested by Michailidis et al. (2014) is at best minimal in brain tissue.
Collapse
Affiliation(s)
| | | | - Geoffrey G. Murphy
- Department of Molecular and Integrative Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Mary C. Horne
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Johannes W. Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Huang J, Zamponi GW. Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr Opin Pharmacol 2016; 32:1-8. [PMID: 27768908 DOI: 10.1016/j.coph.2016.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/31/2023]
Abstract
Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.
Collapse
Affiliation(s)
- Junting Huang
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
15
|
Hu Z, Wang JW, Yu D, Soon JL, de Kleijn DPV, Foo R, Liao P, Colecraft HM, Soong TW. Aberrant Splicing Promotes Proteasomal Degradation of L-type Ca V1.2 Calcium Channels by Competitive Binding for Ca Vβ Subunits in Cardiac Hypertrophy. Sci Rep 2016; 6:35247. [PMID: 27731386 PMCID: PMC5059693 DOI: 10.1038/srep35247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Decreased expression and activity of CaV1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of CaV1.2 channel, named CaV1.2e21+22, that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca2+ ions, it reduced the cell-surface expression of wild-type CaV1.2 channels and consequently decreased the whole-cell Ca2+ influx via the CaV1.2 channels. In addition, the CaV1.2e21+22 variant interacted with CaVβ subunits significantly more than wild-type CaV1.2 channels, and competition of CaVβ subunits by CaV1.2e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type CaV1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of CaV1.2 channels in adult heart under stress may contribute to heart failure.
Collapse
Affiliation(s)
- Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Jia Lin Soon
- National Heart Centre Singapore, 5 hospital drive, 169609, Singapore
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore.,Dept of Cardiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Roger Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, 117599, Singapore
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng 308433, Singapore
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore.,Neurobiology/Ageing Programme, National University of Singapore, 117456, Singapore
| |
Collapse
|
16
|
Solís-Chagoyán H, Flores-Soto E, Reyes-García J, Valdés-Tovar M, Calixto E, Montaño LM, Benítez-King G. Voltage-Activated Calcium Channels as Functional Markers of Mature Neurons in Human Olfactory Neuroepithelial Cells: Implications for the Study of Neurodevelopment in Neuropsychiatric Disorders. Int J Mol Sci 2016; 17:ijms17060941. [PMID: 27314332 PMCID: PMC4926474 DOI: 10.3390/ijms17060941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca2+ Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca2+. By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors’ response was discarded for the absence of transmembrane inward Ca2+ movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.
Collapse
Affiliation(s)
- Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Marcela Valdés-Tovar
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Eduardo Calixto
- Departamento de Neurobiología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco No. 101, Col. San Lorenzo-Huipulco, Mexico City 14370, Mexico.
| |
Collapse
|
17
|
Dahimene S, Page KM, Nieto-Rostro M, Pratt WS, D'Arco M, Dolphin AC. A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant. Neurobiol Dis 2016; 93:243-56. [PMID: 27260834 PMCID: PMC4940211 DOI: 10.1016/j.nbd.2016.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 02/08/2023] Open
Abstract
Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide.
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Marianna D'Arco
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
18
|
Soong TW, Mori MX. Post-transcriptional modifications and "Calmodulation" of voltage-gated calcium channel function: Reflections by two collaborators of David T Yue. Channels (Austin) 2015; 10:14-9. [PMID: 26054929 DOI: 10.1080/19336950.2015.1051271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This review article is written to specially pay tribute to David T. Yue who was an outstanding human being and an excellent scientist who exuded passion and creativity. He exemplified an inter-disciplinary scientist who was able to cross scientific boundaries effortlessly in order to provide amazing understanding on how calcium channels work. This article provides a glimpse of some of the research the authors have the privilege to collaborate with David and it attempts to provide the thinking behind some of the research done. In a wider context, we highlight that calcium channel function could be exquisitely modulated by interaction with a tethered calmodulin. Post-transcriptional modifications such as alternative splicing and RNA editing further influence the Ca(2+)-CaM mediated processes such as calcium dependent inhibition and/or facilitation. Besides modifications of electrophysiological and pharmacological properties, protein interactions with the channels could also be influenced in a splice-variant dependent manner.
Collapse
Affiliation(s)
- Tuck Wah Soong
- a Department of Physiology ; Yong Loo Lin School of Medicine; National University of Singapore ; Singapore.,b NUS Graduate School for Integrative Science and Engineering, and Neurobiology/Aging Program ; Singapore.,c National Neuroscience Institute ; Singapore
| | - Masayuki X Mori
- d Kyoto University Department of Synthetic Chemistry and Biological Chemistry ; Graduate School of Engineering, Kyoto University ; Kyoto , Japan
| |
Collapse
|