1
|
Yang JG, Chen HY, Guardado JH, Gardner M, Foronda MS. Two stages of substrate discrimination dictate selectivity in the E. coli MetNI-Q ABC transporter system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633972. [PMID: 39896590 PMCID: PMC11785062 DOI: 10.1101/2025.01.20.633972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The Escherichia coli MetNI-Q importer, an ATP-binding cassette (ABC) transporter, mediates the uptake of both L- and D- enantiomers of methionine. Original in vivo uptake studies show a strong preference for L-Met over D-Met, but the molecular basis of this selectivity is unclear. In this work, we systematically examine substrate discrimination by the MetNI transporter and MetQ substrate binding protein using an array of biophysical and biochemical techniques. Based on the kinetic and thermodynamic parameters of individual intermediates in the transport cycle, we uncover multiple steps in the transport cycle that confer substrate specificity. As in many other ABC importer systems, selectivity is applied at the level of binding to the substrate binding protein: MetQ dictates a 1,000-fold preference for L-Met over D-Met. However, beyond this initial level of selectivity, MetQ displays distinct binding preferences for the MetNI transporter depending on the substrate. We propose that the differences in binding affinities reflect the more favored release of L-Met into the permeation pathway when compared to D-Met. In support of this model, under saturating conditions, MetNI transports L-Met across the lipid bilayer at a faster rate than D-Met. Interestingly, the ATPase activity of the MetNI-Q complex is not modulated by the presence of substrate. Our studies reveal that the MetNI-Q system incorporates two separate steps in tuning methionine uptake to substrate chirality and availability. This method of discrimination ensures the import of the most biologically preferred substrate while also allowing for adaptability to more limiting nutrient conditions.
Collapse
Affiliation(s)
- Janet G. Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | | | | | - Maile Gardner
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Matthew S. Foronda
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| |
Collapse
|
2
|
Perreault M, Means J, Gerson E, James M, Cotton S, Bergeron CG, Simon M, Carlin DA, Schmidt N, Moore TC, Blasbalg J, Sondheimer N, Ndugga-Kabuye K, Denney WS, Isabella VM, Lubkowicz D, Brennan A, Hava DL. The live biotherapeutic SYNB1353 decreases plasma methionine via directed degradation in animal models and healthy volunteers. Cell Host Microbe 2024; 32:382-395.e10. [PMID: 38309259 DOI: 10.1016/j.chom.2024.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine β-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.
Collapse
|
3
|
Sharma K, Ghiffary MR, Lee G, Kim HU. Efficient production of an antitumor precursor actinocin and other medicinal molecules from kynurenine pathway in Escherichia coli. Metab Eng 2024; 81:144-156. [PMID: 38043641 DOI: 10.1016/j.ymben.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Kynurenine pathway has a potential to convert L-tryptophan into multiple medicinal molecules. This study aims to explore the biosynthetic potential of kynurenine pathway for the efficient production of actinocin, an antitumor precursor selected as a proof-of-concept target molecule. Kynurenine pathway is first constructed in Escherichia coli by testing various combinations of biosynthetic genes from four different organisms. Metabolic engineering strategies are next performed to improve the production by inhibiting a competing pathway, and enhancing intracellular supply of a cofactor S-adenosyl-L-methionine, and ultimately to produce actinocin from glucose. Metabolome analysis further suggests additional gene overexpression targets, which finally leads to the actinocin titer of 719 mg/L. E. coli strain engineered to produce actinocin is further successfully utilized to produce 350 mg/L of kynurenic acid, a neuroprotectant, and 1401 mg/L of 3-hydroxyanthranilic acid, an antioxidant, also from glucose. These competitive production titers demonstrate the biosynthetic potential of kynurenine pathway as a source of multiple medicinal molecules. The approach undertaken in this study can be useful for the sustainable production of molecules derived from kynurenine pathway, which are otherwise chemically synthesized.
Collapse
Affiliation(s)
- Komal Sharma
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Mohammad Rifqi Ghiffary
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - GaRyoung Lee
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Elston R, Mulligan C, Thomas GH. Flipping the switch: dynamic modulation of membrane transporter activity in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37948297 DOI: 10.1099/mic.0.001412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predominantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread regulation of transporter activity in biology.
Collapse
Affiliation(s)
- Rory Elston
- Department of Biology, University of York, York, UK
| | | | | |
Collapse
|
5
|
On the electrochemical oxidation of methionine residues of proteins. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Guffick C, Hsieh PY, Ali A, Shi W, Howard J, Chinthapalli DK, Kong AC, Salaa I, Crouch LI, Ansbro MR, Isaacson SC, Singh H, Barrera NP, Nair AV, Robinson CV, Deery MJ, van Veen HW. Drug-dependent inhibition of nucleotide hydrolysis in the heterodimeric ABC multidrug transporter PatAB from Streptococcus pneumoniae. FEBS J 2022; 289:3770-3788. [PMID: 35066976 PMCID: PMC9541285 DOI: 10.1111/febs.16366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 02/02/2023]
Abstract
The bacterial heterodimeric ATP‐binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug‐resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide‐binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug‐mimetic azido‐ethidium. Surprisingly, our analyses of azido‐ethidium‐labelled PatAB peptides point to ethidium binding in the PatA nucleotide‐binding domain, with the azido moiety crosslinked to residue Q521 in the H‐like loop of the degenerate nucleotide‐binding site. Investigation into this compound and residue’s role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium‐dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium‐like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non‐competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide‐binding domains.
Collapse
Affiliation(s)
| | - Pei-Yu Hsieh
- Department of Pharmacology, University of Cambridge, UK
| | - Anam Ali
- Department of Pharmacology, University of Cambridge, UK
| | - Wilma Shi
- Department of Pharmacology, University of Cambridge, UK
| | - Julie Howard
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | | - Alex C Kong
- Department of Pharmacology, University of Cambridge, UK
| | - Ihsene Salaa
- Department of Pharmacology, University of Cambridge, UK
| | - Lucy I Crouch
- Department of Pharmacology, University of Cambridge, UK
| | | | | | | | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asha V Nair
- Department of Pharmacology, University of Cambridge, UK
| | | | - Michael J Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
7
|
Tang J, Chen J, Liu Y, Hu J, Xia Z, Li X, He H, Rang J, Sun Y, Yu Z, Cui J, Xia L. The Global Regulator PhoU Positively Controls Growth and Butenyl-Spinosyn Biosynthesis in Saccharopolyspora pogona. Front Microbiol 2022; 13:904627. [PMID: 35756073 PMCID: PMC9218956 DOI: 10.3389/fmicb.2022.904627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Butenyl-spinosyn, a highly effective biological insecticide, is produced by Saccharopolyspora pogona. However, its application has been severely hampered by its low yield. Recent studies have shown that PhoU plays a pivotal role in regulating cell growth, secondary metabolite biosynthesis and intracellular phosphate levels. Nevertheless, the function of PhoU remains ambiguous in S. pogona. In this study, we investigated the effects of PhoU on the growth and the butenyl-spinosyn biosynthesis of S. pogona by constructing the mutants. Overexpression of phoU increased the production of butenyl-spinosyn to 2.2-fold that of the wild-type strain. However, the phoU deletion resulted in a severe imbalance of intracellular phosphate levels, and suppression of the growth and butenyl-spinosyn biosynthesis. Quantitative Real-time PCR (qRT-PCR) analysis, distinctive protein detection and mass spectrometry revealed that PhoU widely regulated primary metabolism, energy metabolism and DNA repair, which implied that PhoU influences the growth and butenyl-spinosyn biosynthesis of S. pogona as a global regulator.
Collapse
Affiliation(s)
- Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaomin Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jun Cui
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Kuznetsova A, Masrati G, Vigonsky E, Livnat-Levanon N, Rose J, Grupper M, Baloum A, Yang JG, Rees DC, Ben-Tal N, Lewinson O. Titratable transmembrane residues and a hydrophobic plug are essential for manganese import via the Bacillus anthracis ABC transporter MntBC-A. J Biol Chem 2021; 297:101087. [PMID: 34416234 PMCID: PMC8487065 DOI: 10.1016/j.jbc.2021.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/07/2022] Open
Abstract
All extant life forms require trace transition metals (e.g., Fe2/3+, Cu1/2+, and Mn2+) to survive. However, as these are environmentally scarce, organisms have evolved sophisticated metal uptake machineries. In bacteria, high-affinity import of transition metals is predominantly mediated by ABC transporters. During bacterial infection, sequestration of metal by the host further limits the availability of these ions, and accordingly, bacterial ABC transporters (importers) of metals are key virulence determinants. However, the structure–function relationships of these metal transporters have not been fully elucidated. Here, we used metal-sensitivity assays, advanced structural modeling, and enzymatic assays to study the ABC transporter MntBC-A, a virulence determinant of the bacterial human pathogen Bacillus anthracis. We find that despite its broad metal-recognition profile, MntBC-A imports only manganese, whereas zinc can function as a high-affinity inhibitor of MntBC-A. Computational analysis shows that the transmembrane metal permeation pathway is lined with six titratable residues that can coordinate the positively charged metal, and mutagenesis studies show that they are essential for manganese transport. Modeling suggests that access to these titratable residues is blocked by a ladder of hydrophobic residues, and ATP-driven conformational changes open and close this hydrophobic seal to permit metal binding and release. The conservation of this arrangement of titratable and hydrophobic residues among ABC transporters of transition metals suggests a common mechanism. These findings advance our understanding of transmembrane metal recognition and permeation and may aid the design and development of novel antibacterial agents.
Collapse
Affiliation(s)
- Anastasiya Kuznetsova
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elena Vigonsky
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nurit Livnat-Levanon
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Jessica Rose
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Moti Grupper
- Infectious Disease Unit, Rambam Health Care Campus, Haifa, Israel
| | - Adan Baloum
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
de Boer M, Cordes T, Poolman B. Kinetic Modelling of Transport Inhibition by Substrates in ABC Importers. J Mol Biol 2020; 432:5565-5576. [PMID: 32800784 DOI: 10.1016/j.jmb.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Prokaryotic ATP-binding cassette (ABC) importers require a substrate-binding protein (SBP) for the capture and delivery of the cognate substrate to the transmembrane domain (TMD) of the transporter. Various biochemical compounds have been identified that bind to the SBP but are not transported. The mechanistic basis for the "non-cognate" substrates not being transported differs. Some non-cognate substrates fail to trigger the appropriate conformational change in the SBP, resulting in loss of affinity for the TMD or the inability to allosterically activate transport. In another mechanism, the SBP cannot release the bound non-cognate substrate. Here, we used rate equations to derive the steady-state transport rate of cognate substrates of an ABC importer and investigated how non-cognate substrates influence this rate. We found that under limiting non-cognate substrate concentrations, the transport rate remains unaltered for each of the mechanisms. In contrast, at saturating substrate and SBP concentrations, the effect of the non-cognate substrate depends heavily on the respective mechanism. For instance, the transport rate becomes zero when the non-cognate substrate cannot be released by the SBP. Yet it remains unaffected when substrate release is possible but the SBP cannot dock onto the TMDs. Our work shows how the different mechanisms of substrate inhibition impact the transport kinetics, which is relevant for understanding and manipulating solute fluxes and hence the propagation of cells in nutritionally complex milieus.
Collapse
Affiliation(s)
- Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr, 2-4, 82152 Planegg-Martinsried, Germany
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Sabrialabed S, Yang JG, Yariv E, Ben-Tal N, Lewinson O. Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY. J Biol Chem 2020; 295:5245-5256. [PMID: 32144203 PMCID: PMC7170509 DOI: 10.1074/jbc.ra119.012063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfur is essential for biological processes such as amino acid biogenesis, iron-sulfur cluster formation, and redox homeostasis. To acquire sulfur-containing compounds from the environment, bacteria have evolved high-affinity uptake systems, predominant among which is the ABC transporter family. Theses membrane-embedded enzymes use the energy of ATP hydrolysis for transmembrane transport of a wide range of biomolecules against concentration gradients. Three distinct bacterial ABC import systems of sulfur-containing compounds have been identified, but the molecular details of their transport mechanism remain poorly characterized. Here we provide results from a biochemical analysis of the purified Escherichia coli YecSC-FliY cysteine/cystine import system. We found that the substrate-binding protein FliY binds l-cystine, l-cysteine, and d-cysteine with micromolar affinities. However, binding of the l- and d-enantiomers induced different conformational changes of FliY, where the l- enantiomer-substrate-binding protein complex interacted more efficiently with the YecSC transporter. YecSC had low basal ATPase activity that was moderately stimulated by apo FliY, more strongly by d-cysteine-bound FliY, and maximally by l-cysteine- or l-cystine-bound FliY. However, at high FliY concentrations, YecSC reached maximal ATPase rates independent of the presence or nature of the substrate. These results suggest that FliY exists in a conformational equilibrium between an open, unliganded form that does not bind to the YecSC transporter and closed, unliganded and closed, liganded forms that bind this transporter with variable affinities but equally stimulate its ATPase activity. These findings differ from previous observations for similar ABC transporters, highlighting the extent of mechanistic diversity in this large protein family.
Collapse
Affiliation(s)
- Siwar Sabrialabed
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Janet G Yang
- Department of Chemistry, University of San Francisco, San Francisco, California 94117
| | - Elon Yariv
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
11
|
Mann E, Kimber MS, Whitfield C. Bioinformatics analysis of diversity in bacterial glycan chain-termination chemistry and organization of carbohydrate-binding modules linked to ABC transporters. Glycobiology 2020; 29:822-838. [PMID: 31504498 DOI: 10.1093/glycob/cwz066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
The structures of bacterial cell surface glycans are remarkably diverse. In spite of this diversity, the general strategies used for their assembly are limited. In one of the major processes, found in both Gram-positive and Gram-negative bacteria, the glycan is polymerized in the cytoplasm on a polyprenol lipid carrier and exported from the cytoplasm by an ATP-binding cassette (ABC) transporter. The ABC transporter actively participates in determining the chain length of the glycan substrate, which impacts functional properties of the glycoconjugate products. A subset of these systems employs an additional elaborate glycan capping strategy that dictates the size distribution of the products. The hallmarks of prototypical capped glycan systems are a chain-terminating enzyme possessing a coiled-coil molecular ruler and an ABC transporter possessing a carbohydrate-binding module, which recognizes the glycan cap. To date, detailed investigations are limited to a small number of prototypes, and here, we used our current understanding of these processes for a bioinformatics census of other examples in available genome sequences. This study not only revealed additional instances of existing terminators but also predicted new chemistries as well as systems that diverge from the established prototypes. These analyses enable some new functional hypotheses and offer a roadmap for future research.
Collapse
Affiliation(s)
- Evan Mann
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
12
|
Korshunov S, Imlay KRC, Imlay JA. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter. Mol Microbiol 2019; 113:22-39. [PMID: 31612555 PMCID: PMC7007315 DOI: 10.1111/mmi.14403] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2019] [Indexed: 12/24/2022]
Abstract
The structure of free cysteine makes it vulnerable to oxidation by molecular oxygen; consequently, organisms that live in oxic habitats have acquired the ability to import cystine as a sulfur source. We show that cystine imported into Escherichia coli can transfer disulfide bonds to cytoplasmic proteins. To minimize this problem, the imported cystine is rapidly reduced. However, this conversion of cystine to cysteine precludes product inhibition of the importer, so cystine import continues into cells that are already sated with cysteine. The burgeoning cysteine pool is itself hazardous, as cysteine promotes the formation of reactive oxygen species, triggers sulfide production and competitively inhibits a key enzyme in the isoleucine biosynthetic pathway. The Lrp transcription factor senses the excess cysteine and induces AlaE, an export protein that pumps cysteine back out of the cell until transcriptional controls succeed in lowering the amount of the importer. While it lasts, the overall phenomenon roughly doubles the NADPH demand of the cell. It comprises another example of the incompatibility of the reduced cytoplasms of microbes with the oxic world in which they dwell. It also reveals one natural source of cytoplasmic disulfide stress and sheds light on a role for broad-spectrum amino acid exporters.
Collapse
Affiliation(s)
- Sergey Korshunov
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | | | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| |
Collapse
|
13
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
14
|
Abstract
Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of Escherichia coli alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which E. coli cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the pstSCAB genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.
Collapse
Affiliation(s)
- Stewart G Gardner
- Department of Biological Sciences, Emporia State University, Emporia, KS 66801
| | - William R McCleary
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602
| |
Collapse
|
15
|
Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S. A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading) 2018; 164:1457-1470. [DOI: 10.1099/mic.0.000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Amy Switzer
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Dimitrios Evangelopoulos
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rita Figueira
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Luiz Pedro S. de Carvalho
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R. Brown
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
16
|
Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 2018; 115:E10596-E10604. [PMID: 30352853 PMCID: PMC6233128 DOI: 10.1073/pnas.1811003115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The high-affinity methionine importer MetNI belongs to the ATP Binding Cassette (ABC) family of transporters that carry out the ATP-dependent uptake of substrates into cells. As with other ABC importers, MetNI requires a soluble binding protein (MetQ) that in the canonical mechanistic model delivers substrates to the transporter. We made the unexpected observation that a MetQ variant with significantly impaired ligand-binding properties supports d-selenomethionine uptake at a higher rate than wild-type MetQ. A crystal structure of MetNIQ in the outward-facing conformation reveals access channels through the binding protein to the transmembrane translocation pathway. These studies support a noncanonical role for the binding protein in facilitating the uptake of certain substrates directly through the transporter–binding protein complex. The Escherichia coli methionine ABC transporter MetNI exhibits both high-affinity transport toward l-methionine and broad specificity toward methionine derivatives, including d-methionine. In this work, we characterize the transport of d-methionine derivatives by the MetNI transporter. Unexpectedly, the N229A substrate-binding deficient variant of the cognate binding protein MetQ was found to support high MetNI transport activity toward d-selenomethionine. We determined the crystal structure at 2.95 Å resolution of the ATPγS-bound MetNIQ complex in the outward-facing conformation with the N229A apo MetQ variant. This structure revealed conformational changes in MetQ providing substrate access through the binding protein to the transmembrane translocation pathway. MetQ likely mediates uptake of methionine derivatives through two mechanisms: in the methionine-bound form delivering substrate from the periplasm to the transporter (the canonical mechanism) and in the apo form by facilitating ligand binding when complexed to the transporter (the noncanonical mechanism). This dual role for substrate-binding proteins is proposed to provide a kinetic strategy for ABC transporters to transport both high- and low-affinity substrates present in a physiological concentration range.
Collapse
|
17
|
Li L, Ghimire-Rijal S, Lucas SL, Stanley CB, Wright E, Agarwal PK, Myles DA, Cuneo MJ. Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding. Biochemistry 2017; 56:5328-5337. [PMID: 28876049 DOI: 10.1021/acs.biochem.7b00657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimeric apo PBP leads to a tightening of the interface α-helices so that the hydrogen bonding pattern shifts to that of a 310 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.
Collapse
Affiliation(s)
| | | | - Sarah L Lucas
- Department of Biomedical Engineering, North Carolina State University , Raleigh North Carolina 27607, United States
| | | | - Edward Wright
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Pratul K Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
18
|
Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 2017; 23:487-93. [PMID: 27273632 DOI: 10.1038/nsmb.3216] [Citation(s) in RCA: 566] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
ABC transporters catalyze transport reactions, such as the high-affinity uptake of micronutrients into bacteria and the export of cytotoxic compounds from mammalian cells. Crystal structures of ABC domains and full transporters have provided a framework for formulating reaction mechanisms of ATP-driven substrate transport, but recent studies have suggested remarkable mechanistic diversity within this protein family. This review evaluates the differing mechanistic proposals and outlines future directions for the exploration of ABC-transporter-catalyzed reactions.
Collapse
Affiliation(s)
- Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Hopfner KP. Invited review: Architectures and mechanisms of ATP binding cassette proteins. Biopolymers 2017; 105:492-504. [PMID: 27037766 DOI: 10.1002/bip.22843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) ATPases form chemo-mechanical engines and switches that function in a broad range of biological processes. Most prominently, a very large family of integral membrane NTPases-ABC transporters-catalyzes the import or export of a diverse molecules across membranes. ABC proteins are also important components of the chromosome segregation, recombination, and DNA repair machineries and regulate or catalyze critical steps of ribosomal protein synthesis. Recent structural and mechanistic studies draw interesting architectural and mechanistic parallels between diverse ABC proteins. Here, I review this state of our understanding how NTP-dependent conformational changes of ABC proteins drive diverse biological processes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 492-504, 2016.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.,Center for Integrated Protein Science Munich, Ludwigs-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
20
|
Nguyen PT, Li QW, Kadaba NS, Lai JY, Yang JG, Rees DC. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex. Biol Chem 2016; 396:1127-34. [PMID: 25803078 DOI: 10.1515/hsz-2015-0131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/19/2015] [Indexed: 01/23/2023]
Abstract
Despite the ubiquitous role of ATP-binding cassette (ABC) importers in nutrient uptake, only the Escherichia coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250-253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nm. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ∼40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system.
Collapse
|