1
|
Wang ZY, He XY, Wu BS, Yang L, You J, Liu WS, Feng JF, Cheng W, Yu JT. Whole-exome sequencing identifies 5 novel genes associated with carpal tunnel syndrome. Hum Mol Genet 2025:ddaf076. [PMID: 40382669 DOI: 10.1093/hmg/ddaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/07/2025] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
Carpal tunnel syndrome (CTS), a common peripheral nerve entrapment disorder, has a high estimated heritability index. Although previous genome-wide association studies have assessed common genetic components of CTS, the risk contributed by coding variants is still not well understood. Here, we performed the largest exome-wide analyses using UK Biobank data from 350 770 participants to find coding variants associated with CTS. We then explored the relative contribution of both rare mutations and polygenic risk score (PRS) to CTS risk in survival analyses. Finally, we investigated the functional pathways of the CTS-related coding genes identified above. Aside from conforming 6 known CTS genes, 5 novel genes were identified (SPSB1, SYNC, ITGB5, MUC13 and LOXL4). The associations of most genes we identified with incident CTS were striking in survival analyses. Additionally, we provided evidence that combining rare coding alleles and polygenic risk score can improve the genetic prediction of CTS. Functional enrichment analyses revealed potential roles of the identified coding variants in CTS pathogenesis, where they contributed to extracellular matrix organization. Our results evaluated the contribution to CTS etiology from quantities of coding variants accessible to exome sequencing data.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Rd., Yangpu District, Shanghai 200433, China
| | - Wei-Shi Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Rd., Yangpu District, Shanghai 200433, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Rd., Yangpu District, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, 220 Handan Rd., Yangpu District, Shanghai 200433, China
- Department of Computer Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 220 Handan Rd., Yangpu District, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, 220 Handan Rd., Yangpu District, Shanghai 200433, China
- Department of Computer Science, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai 200040, China
| |
Collapse
|
2
|
Tian L, Wang Y, Guan J, Zhang L, Fan J. The Prognostic Value and Immunomodulatory Role of Spsb2, a Novel Immune Checkpoint Molecule, in Hepatocellular Carcinoma. Genes (Basel) 2025; 16:346. [PMID: 40149497 PMCID: PMC11941779 DOI: 10.3390/genes16030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Liver cancer, specifically hepatocellular carcinoma (LIHC), ranks as the second most common cause of cancer-related fatalities globally. Moreover, the occurrence rate of LIHC is steadily increasing. A recently identified gene, SPSB2, has been implicated in cell signaling, impacting the development and progression of non-small cell lung cancer. Nevertheless, studies on the role of SPSB2 in the pathogenesis of LIHC are lacking. METHODS Using the TCGA, GTEx, and GEO databases, we obtained differentially expressed genes that affect the prognosis of patients with LIHC. We utilized the Kruskal-Wallis test, along with univariate and multivariate COX regression analyses, to determine the correlation between SPSB2 and patient clinical indicators. Potential biological functions of SPSB2 in LIHC were explored by enrichment analysis, ssGSEA, and Spearman correlation analysis. Finally, LIHC cell lines Huh7 and SMMC-7721 were used to validate the biological function of SPSB2. RESULTS The results showed LIHC patients with higher SPSB2 expression had a poorer prognosis, and SPSB2 expression was significantly correlated with LIHC patients' Histologic grade, Pathologic T stage, Prothrombin time, Pathologic stage, BMI, weight, adjacent hepatic tissue inflammation, AFP level, and OS event (p < 0.05). SPSB2 shows notable enrichment in pathways linked to tumorigenesis and the immune system. Moreover, its expression is strongly connected to immune cells and immune checkpoints. Knockdown of SPSB2 expression in Huh7 cells and SMMC-7721 cells inhibits SPSB2's biological functions, including proliferation, invasion, metastasis, and other phenotypes. CONCLUSIONS SPSB2 plays a crucial role in the development of LIHC. It is related to the immune response and unfavorable outcomes. SPSB2 may function as a clinical biomarker for prognosis.
Collapse
Affiliation(s)
- Lv Tian
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yiming Wang
- School of Nursing, Jilin University, Changchun 130021, China
| | - Jiexin Guan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Hu H, Zhu Y, Jiang B, Zhou N, Wu T, Wang G, Shen C, Wu Y, Xi X. Testis-enriched Spsb1 is not required for spermatogenesis and fertility in mice. Am J Transl Res 2025; 17:1824-1833. [PMID: 40226024 PMCID: PMC11982841 DOI: 10.62347/jfjx7128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/19/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVES SPRY (repeats in splA and RyR) domain-containing SOCS (suppressor of cytokine signaling) box protein 1 (SPSB1) is an E3 ligase adaptor protein that has been implicated in various cellular processes and physiological pathways. However, its role in spermatogenesis remains poorly understood. The objective of this study was to investigate the impact of SPSB1 deficiency on spermatogenesis and male fertility in mice. METHODS We generated Spsb1 knockout (Spsb1-KO) mice to explore the effects of SPSB1 deficiency on sperm quality. To assess sperm parameters, we utilized computer-assisted sperm analysis (CASA), which provides precise measurements of sperm motility, concentration, and morphology. Additionally, histological and immunohistochemical analyses were performed to evaluate the influence of SPSB1 deficiency on spermatogenesis. RESULTS Our results showed no significant differences in semen quality, fertility, or histological findings between Spsb1-KO and wild-type (WT) mice. CONCLUSIONS This study demonstrates that SPSB1 is not essential for spermatogenesis or male fertility in mice. These findings provide a valuable resource for future genetic investigations into human fertility and help prevent unnecessary duplication of research efforts in this area.
Collapse
Affiliation(s)
- Haoyue Hu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Yue Zhu
- Department of Thyroid and Breast Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Nianchao Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Gaigai Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214062, Jiangsu, China
| | - Xiaoxue Xi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|
4
|
Li Y, Zhu M, Yang P, Chen D, Zhou D, Ren Y, Zhang Z, Ruan C, Da Y, Zhang R. Sp3 ameliorated experimental autoimmune encephalomyelitis by triggering Socs3 in Th17 cells. J Adv Res 2025:S2090-1232(25)00070-0. [PMID: 39884649 DOI: 10.1016/j.jare.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
INTRODUCTION Although it is believed that chronic inflammatory and degenerative diseases of the central nervous system are mediated by autoimmune Th17 cells, the underlying mechanisms remain largely unexplored. Recent studies and our research have revealed that Sp3 was blocked in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE). However, it remained unclear why it is silent and how it regulates Th17 cell differentiation in MS. OBJECTIVES This study aimed to explore the impact of Sp3 on Th17 cell-mediated EAE and the underlying mechanism. METHODS The effect of Sp3 on the clinical symptoms of EAE was evaluated by scoring, histochemistry, and fast blue (FB) techniques, scRNA-seq data analysis, flow cytometry, ELISA, PCR, WB, immunofluorescence and reporter gene techniques were used to explore the molecular mechanism of Sp3 regulating Th17 cell differentiation. RESULTS Injection of overexpression Sp3 lentivirus could significantly ameliorate the EAE progress and clinical symptoms and prevent the polarization of Th1 and Th17 cells both in vivo and in vitro. We confirmed the occurrence of EAE in Sp3+/+CD4Cre mice and Sp3+/- knockout mice. Furthermore, we identified Sp3 as a target of miR-223, which is found to be upregulated in the blood of MS patients, as well as in EAE and Th17 cells. Moreover, knockdown of miR-223 led to a marked improvement in EAE symptoms and a suppression of Th1 and Th17 cell polarization in vivo and in vitro. Mechanistically, Sp3 significantly suppressed RORγt expression and the phosphorylation of Stat3 and Smad2/3 by directly upregulating Socs3. Interestingly, Socs3 was found to regulate Sp3 expression in response to TGF-β1 via a feedback loop. Moreover, Socs3 modulated phospho-Smad2/3 by binding to and degrading the transforming growth factor-β receptor II (TβRII). CONCLUSION Thus, our study suggests a novel mechanism involving miR-223/Sp3/Socs3/TGF-β signaling as a potential therapeutic strategy for targeting Th17 cells in immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Mengyi Zhu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Penghui Yang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Daoyang Chen
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongmei Zhou
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Yinghui Ren
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Zimu Zhang
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Da
- Department of Immunology, Tianjin Medical University, Tianjin 300070, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Tuersuntuoheti A, Li Q, Teng Y, Li X, Huang R, Lu Y, Li K, Liang J, Miao S, Wu W, Song W. YWK-II/APLP2 inhibits TGF-β signaling by interfering with the TGFBR2-Hsp90 interaction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119548. [PMID: 37479189 DOI: 10.1016/j.bbamcr.2023.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Transforming growth factor-β (TGF-β) regulates multiple cellular biological processes by activating TGF-β type I receptors (TGFBR1) and type II receptors (TGFBR2), and Hsp90 stabilizes these receptors through specific interactions. In many malignancies, one of the most deregulated signaling pathways is the TGF-β signaling pathway, which is often inactivated by mutations or deregulation of TGF-β type II receptors (TGFBR2). However, the molecular mechanisms are not well understood. In this study, we show that YWK-II/APLP2, an immediately early response gene for TGF-β signaling, inhibits TGF-β signaling by promoting the degradation of the TGFBR2 protein. Knockdown of YWK-II/APLP2 increases the TGFBR2 protein level and sensitizes cells to TGF-β stimulation, while YWK-II/APLP2 overexpression destabilizes TGFBR2 and desensitizes cells to TGF-β. Mechanistically, YWK-II/APLP2 is associated with TGFBR2 in a TGF-β activity-dependent manner, binds to Hsp90 to interfere with the interaction between TGFBR2 and Hsp90, and leads to enhanced ubiquitination and degradation of TGFBR2. Taken together, YWK-II/APLP2 is involved in negatively regulating the duration and intensity of TGF-β/Smad signaling and suggests that aberrantly high expression of YWK-II/APLP2 in malignancies may antagonize the growth inhibition mediated by TGF-β signaling and play a role in carcinogenesis.
Collapse
Affiliation(s)
- Amannisa Tuersuntuoheti
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qinshan Li
- Guizhou Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Clinical Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yu Teng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaolu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Junbo Liang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Yadav M, Akhtar MN, Mishra M, Kumar S, Kumar R, Shubham, Nandal A, Sen P. Leishmania donovani Attenuates Dendritic Cell Trafficking to Lymph Nodes by Inhibiting C-Type Lectin Receptor 2 Expression via Transforming Growth Factor-β. Microbiol Spectr 2023; 11:e0412222. [PMID: 37125906 PMCID: PMC10269552 DOI: 10.1128/spectrum.04122-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/10/2023] [Indexed: 05/02/2023] Open
Abstract
To initiate an antileishmanial adaptive immune response, dendritic cells (DCs) must carry Leishmania antigens from peripheral tissues to local draining lymph nodes. However, the migratory capacity of DCs is largely compromised during Leishmania donovani infection. The molecular mechanism underlying this defective DC migration is not yet fully understood. Here, we demonstrate that L. donovani infection impaired the lymph node homing ability of DCs by decreasing C-type lectin receptor 2 (CLEC-2) expression. L. donovani exerted this inhibitory effect by inducing transforming growth factor-β (TGF-β) secretion from DCs. Indeed, TGF-β produced in this manner inhibited nuclear factor-κB (NF-κB)-mediated CLEC-2 expression on DCs by activating c-Src. Notably, suppression of c-Src expression significantly improved the arrival of DCs in draining lymph nodes by preventing L. donovani-induced CLEC-2 downregulation on DCs. These findings reveal a unique mechanism by which L. donovani inhibits DC migration to lymph nodes and suggest a key role for TGF-β, c-Src, and CLEC-2 in regulating this process. IMPORTANCE Dendritic cells (DCs) play a key role in initiating T cell-mediated protective immunity against visceral leishmaniasis (VL), the second most lethal parasitic disease in the world. However, the T cell-inducing ability of DCs critically depends on the extent of DC migration to regional lymph nodes. Notably, the migration of DCs is reported to be impaired during VL. The cause of this impaired DC migration, however, remains ill-defined. Here, we provide the first evidence that L. donovani, the causative agent of VL, attenuates the lymph node homing capacity of DCs by decreasing C-type lectin receptor 2 (CLEC-2) expression on DCs. Additionally, we have demonstrated how L. donovani mediates this inhibitory effect. Overall, our work has revealed a unique mechanism underlying L. donovani-induced impairment of DC migration and suggests a potential strategy to improve antileishmanial T cell activity by increasing DC arrival in lymph nodes.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
| | - Md. Naushad Akhtar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raj Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
| | - Shubham
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anil Nandal
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
| | - Pradip Sen
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research—Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Ma M, Wang X, Liu X, Han Y, Chu Y, Guan Y, Liu H. Engineered fibrotic liver-targeted truncated transforming growth factor β receptor type II variant for superior anti-liver fibrosis therapy. Arch Pharm Res 2023; 46:177-191. [PMID: 36905489 DOI: 10.1007/s12272-023-01435-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Truncated transforming growth factor β receptor type II (tTβRII) is a promising anti-liver fibrotic candidate because it serves as a trap for binding excessive TGF-β1 by means of competing with wild type TβRII (wtTβRII). However, the widespread application of tTβRII for the treatment of liver fibrosis has been limited by its poor fibrotic liver-homing capacity. Herein, we designed a novel tTβRII variant Z-tTβRII by fusing the platelet-derived growth factor β receptor (PDGFβR)-specific affibody ZPDGFβR to the N-terminus of tTβRII. The target protein Z-tTβRII was produced using Escherichia coli expression system. In vitro and in vivo studies showed that Z-tTβRII has a superior specific fibrotic liver-targeting potential via the engagement of PDGFβR-overexpressing activated hepatic stellate cells (aHSCs) in liver fibrosis. Moreover, Z-tTβRII significantly inhibited cell migration and invasion, and downregulated fibrosis- and TGF-β1/Smad pathway-related protein levels in TGF-β1-stimiluated HSC-T6 cells. Furthermore, Z-tTβRII remarkably ameliorated liver histopathology, mitigated the fibrosis responses and blocked TGF-β1/Smad signaling pathway in CCl4-induced liver fibrotic mice. More importantly, Z-tTβRII exhibits a higher fibrotic liver-targeting potential and stronger anti-fibrotic effects than either its parent tTβRII or former variant BiPPB-tTβRII (PDGFβR-binding peptide BiPPB modified tTβRII). In addition, Z-tTβRII shows no significant sign of potential side effects in other vital organs in liver fibrotic mice. Taken together, we conclude that Z-tTβRII with its a high fibrotic liver-homing potential, holds a superior anti-fibrotic activity in liver fibrosis in vitro and in vivo, which may be a potential candidate for targeted therapy for liver fibrosis.
Collapse
Affiliation(s)
- Manman Ma
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xiaohua Wang
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Xiaohui Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yang Han
- The First Clinical College, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China
| | - Yanzhong Guan
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China.
| | - Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China.
- Laboratory of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, 157011, People's Republic of China.
| |
Collapse
|
10
|
Liu J, Jin J, Liang T, Feng XH. To Ub or not to Ub: a regulatory question in TGF-β signaling. Trends Biochem Sci 2022; 47:1059-1072. [PMID: 35810076 DOI: 10.1016/j.tibs.2022.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
The transforming growth factor β (TGF-β) superfamily controls a wide spectrum of biological processes in metazoans, including cell proliferation, apoptosis, differentiation, cell-fate determination, and embryonic development. Deregulation of TGF-β-Smad signaling contributes to developmental anomalies and a variety of disorders and diseases such as tumorigenesis, fibrotic disorders, and immune diseases. In cancer, TGF-β has dual effects through its antiproliferative and prometastatic actions. At the cellular level, TGF-β functions mainly through the canonical Smad-dependent pathway in a cell type-specific and context-dependent manner. Accumulating evidence has demonstrated that ubiquitination plays a vital role in regulating TGF-β-Smad signaling. We summarize current progress on ubiquitination (Ub) and the ubiquitin ligases that regulate TGF-β-Smad signaling.
Collapse
Affiliation(s)
- Jinquan Liu
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianping Jin
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin-Hua Feng
- Ministry of Education (MOE) Key Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
11
|
Saadat N, Puttabyatappa M, Elangovan VR, Dou J, Ciarelli JN, Thompson RC, Bakulski KM, Padmanabhan V. Developmental Programming: Prenatal Testosterone Excess on Liver and Muscle Coding and Noncoding RNA in Female Sheep. Endocrinology 2022; 163:6413684. [PMID: 34718504 PMCID: PMC8667859 DOI: 10.1210/endocr/bqab225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 11/19/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance, ectopic lipid accumulation, and insulin signaling disruption in liver and muscle. This study investigated transcriptional changes and transcriptome signature of prenatal T excess-induced hepatic and muscle-specific metabolic disruptions. Genome-wide coding and noncoding (nc) RNA expression in liver and muscle from 21-month-old prenatal T-treated (T propionate 100 mg intramuscular twice weekly from days 30-90 of gestation; term: 147 days) and control females were compared. Prenatal T (1) induced differential expression of messenger RNAs (mRNAs) in liver (15 down, 17 up) and muscle (66 down, 176 up) (false discovery rate < 0.05, absolute log2 fold change > 0.5); (2) downregulated mitochondrial pathway genes in liver and muscle; (3) downregulated hepatic lipid catabolism and peroxisome proliferator-activated receptor (PPAR) signaling gene pathways; (4) modulated noncoding RNA (ncRNA) metabolic processes gene pathway in muscle; and (5) downregulated 5 uncharacterized long noncoding RNA (lncRNA) in the muscle but no ncRNA changes in the liver. Correlation analysis showed downregulation of lncRNAs LOC114112974 and LOC105607806 was associated with decreased TPK1, and LOC114113790 with increased ZNF470 expression. Orthogonal projections to latent structures discriminant analysis identified mRNAs HADHA and SLC25A45, and microRNAs MIR154A, MIR25, and MIR487B in the liver and ARIH1 and ITCH and miRNAs MIR369, MIR10A, and MIR10B in muscle as potential biomarkers of prenatal T excess. These findings suggest downregulation of mitochondria, lipid catabolism, and PPAR signaling genes in the liver and dysregulation of mitochondrial and ncRNA gene pathways in muscle are contributors of lipotoxic and insulin-resistant hepatic and muscle phenotype. Gestational T excess programming of metabolic dysfunctions involve tissue-specific ncRNA-modulated transcriptional changes.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Muraly Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | | | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Joseph N Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48019-5718, USA
- Correspondence: Vasantha Padmanabhan, PhD, MS, Department of Pediatrics, University of Michigan, 7510 MSRB1, 1150 W Medical Center Dr, Ann Arbor, MI 48019-5718, USA.
| |
Collapse
|
12
|
Liu J, Yuan B, Cao J, Luo H, Gu S, Zhang M, Ding R, Zhang L, Zhou F, Hung MC, Xu P, Lin X, Jin J, Feng XH. AMBRA1 promotes TGF-β signaling via non-proteolytic polyubiquitylation of Smad4. Cancer Res 2021; 81:5007-5020. [PMID: 34362797 DOI: 10.1158/0008-5472.can-21-0431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Transforming growth factor-β (TGF-β) is pro-metastatic in advanced cancers and its biological activities are mainly mediated by the Smad family of proteins. Smad4 is the central signal transducer and transcription factor in the TGF-β pathway, yet the underlying mechanisms that govern transcriptional activities of Smad4 are not fully understood. Here, we show that AMBRA1, a member of the DDB1 and CUL4-associated factor (DCAF) family of proteins, serves as the substrate receptor for Smad4 in the CUL4-RING (CRL4) ubiquitin ligase complex. The CRL4-AMBRA1 ubiquitin ligase mediates non-proteolytic polyubiquitylation of Smad4 to enhance its transcriptional functions. Consequently, AMBRA1 potentiated TGF-β signaling and critically promoted TGF-β-induced epithelial-to-mesenchymal transition, migration, and invasion of breast cancer cells. Mouse models of breast cancer demonstrated that AMBRA1 promotes metastasis. Collectively, these results show that CRL4-AMBRA1 facilitates TGF-β-driven metastasis by increasing Smad4 polyubiquitylation, suggesting AMBRA1 may serve as a new therapeutic target in metastatic breast cancer.
Collapse
Affiliation(s)
- Jinquan Liu
- Life Sciences Institute, Zhejiang University
| | - Bo Yuan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Jin Cao
- Life Sciences Institute, Zhejiang University
| | - Hongjie Luo
- Life Sciences Institute, Zhejiang University
| | - Shuchen Gu
- Life Sciences Institute, Zhejiang University
| | - Mengdi Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Ran Ding
- Life Sciences Institute, Zhejiang University
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University
| | | | - Pinglong Xu
- Life Sciences Institute, Zhejiang University
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine
| | | | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University
| |
Collapse
|
13
|
Fan J, Hu J, Xue C, Zhang H, Susztak K, Reilly MP, Xiao R, Li M. ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLoS Genet 2020; 16:e1008786. [PMID: 32392242 PMCID: PMC7241832 DOI: 10.1371/journal.pgen.1008786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/21/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Allele-specific expression (ASE) analysis, which quantifies the relative expression of two alleles in a diploid individual, is a powerful tool for identifying cis-regulated gene expression variations that underlie phenotypic differences among individuals. Existing methods for gene-level ASE detection analyze one individual at a time, therefore failing to account for shared information across individuals. Failure to accommodate such shared information not only reduces power, but also makes it difficult to interpret results across individuals. However, when only RNA sequencing (RNA-seq) data are available, ASE detection across individuals is challenging because the data often include individuals that are either heterozygous or homozygous for the unobserved cis-regulatory SNP, leading to sample heterogeneity as only those heterozygous individuals are informative for ASE, whereas those homozygous individuals have balanced expression. To simultaneously model multi-individual information and account for such heterogeneity, we developed ASEP, a mixture model with subject-specific random effect to account for multi-SNP correlations within the same gene. ASEP only requires RNA-seq data, and is able to detect gene-level ASE under one condition and differential ASE between two conditions (e.g., pre- versus post-treatment). Extensive simulations demonstrated the convincing performance of ASEP under a wide range of scenarios. We applied ASEP to a human kidney RNA-seq dataset, identified ASE genes and validated our results with two published eQTL studies. We further applied ASEP to a human macrophage RNA-seq dataset, identified genes showing evidence of differential ASE between M0 and M1 macrophages, and confirmed our findings by results from cardiometabolic trait-relevant genome-wide association studies. To the best of our knowledge, ASEP is the first method for gene-level ASE detection at the population level that only requires the use of RNA-seq data. With the growing adoption of RNA-seq, we believe ASEP will be well-suited for various ASE studies for human diseases.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
- The Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
14
|
Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020; 67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
Cullin-RING ligase 5 (CRL5) is a multi-protein complex and consists of a scaffold protien cullin 5, a RING protein RBX2 (also known as ROC2 or SAG), adaptor proteins Elongin B/C, and a substrate receptor protein SOCS. Through targeting a variety of substrates for proteasomal degradation or modulating various protein-protein interactions, CRL5 is involved in regulation of many biological processes, such as cytokine signal transduction, inflammation, viral infection, and oncogenesis. As many substrates of CRL5 are well-known oncoproteins or tumor suppressors, abnormal regulation of CRL5 is commonly found in human cancers. In this review, we first briefly introduce each of CRL5 components, and then discuss the biological processes regulated by four members of SOCS-box-containing substrate receptor family through substrate degradation. We next describe how CRL5 is hijacked by a variety of viral proteins to degrade host anti-viral proteins, which facilitates virus infection. We further discuss the regulation of CUL5 and its various roles in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose novel insights for future perspectives on the validation of cullin5 and other CRL5 components as potential targets, and possible targeting strategies to discover CRL5 inhibitors for anti-cancer and anti-virus therapies.
Collapse
Affiliation(s)
- Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China; Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Georgana I, Maluquer de Motes C. Cullin-5 Adaptor SPSB1 Controls NF-κB Activation Downstream of Multiple Signaling Pathways. Front Immunol 2020; 10:3121. [PMID: 32038638 PMCID: PMC6985365 DOI: 10.3389/fimmu.2019.03121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
The initiation of innate immune responses against pathogens relies on the activation of pattern-recognition receptors (PRRs) and corresponding intracellular signaling cascades. To avoid inappropriate or excessive activation of PRRs, these responses are tightly controlled. Cullin-RING E3 ubiquitin ligases (CRLs) have emerged as critical regulators of many cellular functions including innate immune activation and inflammation. CRLs form multiprotein complexes in which a Cullin protein acts as a scaffold and recruits specific adaptor proteins, which in turn recognize specific substrate proteins for ubiquitylation, hence providing selectivity. CRLs are divided into 5 main groups, each of which uses a specific group of adaptor proteins. Here, we systematically depleted all predicted substrate adaptors for the CRL5 family (the so-called SOCS-box proteins) and assessed the impact on the activation of the inflammatory transcription factor NF-κB. Depletion of SPSB1 resulted in a significant increase in NF-κB activation, indicating the importance of SPSB1 as an NF-κB negative regulator. In agreement, overexpression of SPSB1 suppressed NF-κB activity in a potent, dose-dependent manner in response to various agonists. Inhibition by SPSB1 was specific to NF-κB, because other transcription factors related to innate immunity and interferon (IFN) responses such as IRF-3, AP-1, and STATs remained unaffected by SPSB1. SPSB1 suppressed NF-κB activation induced via multiple pathways including Toll-like receptors and RNA and DNA sensing adaptors, and required the presence of its SOCS-box domain. To provide mechanistic insight, we examined phosphorylation and degradation of the inhibitor of κB (IκBα) and p65 translocation into the nucleus. Both remained unaffected by SPSB1, indicating that SPSB1 exerts its inhibitory activity downstream, or at the level, of the NF-κB heterodimer. In agreement with this, SPSB1 was found to co-precipitate with p65 after over-expression and at endogenous levels. Additionally, A549 cells stably expressing SPSB1 presented lower cytokine levels including type I IFN in response to cytokine stimulation and virus infection. Taken together, our results reveal novel regulatory mechanisms in innate immune signaling and identify the prominent role of SPSB1 in limiting NF-κB activation. Our work thus provides insights into inflammation and inflammatory diseases and new opportunities for the therapeutic targeting of NF-κB transcriptional activity.
Collapse
|
16
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Mekbib T, Suen TC, Rollins-Hairston A, DeBruyne JP. The E3 Ligases Spsb1 and Spsb4 Regulate RevErbα Degradation and Circadian Period. J Biol Rhythms 2019; 34:610-621. [PMID: 31607207 DOI: 10.1177/0748730419878036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The time-dependent degradation of core circadian clock proteins is essential for the proper functioning of circadian timekeeping mechanisms that drive daily rhythms in gene expression and, ultimately, an organism's physiology. The ubiquitin proteasome system plays a critical role in regulating the stability of most proteins, including the core clock components. Our laboratory developed a cell-based functional screen to identify ubiquitin ligases that degrade any protein of interest and have started screening for those ligases that degrade circadian clock proteins. This screen identified Spsb4 as a putative novel E3 ligase for RevErbα. In this article, we further investigate the role of Spsb4 and its paralogs in RevErbα stability and circadian rhythmicity. Our results indicate that the paralogs Spsb1 and Spsb4, but not Spsb2 and Spsb3, can interact with and facilitate RevErbα ubiquitination and degradation and regulate circadian clock periodicity.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Jason P DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
18
|
Wang M, Wang Y, Liu Y, Wang H, Xin X, Li J, Hao Y, Han L, Yu F, Zheng C, Shen C. SPSB2 inhibits hepatitis C virus replication by targeting NS5A for ubiquitination and degradation. PLoS One 2019; 14:e0219989. [PMID: 31344133 PMCID: PMC6657855 DOI: 10.1371/journal.pone.0219989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) replication involves many viral and host factors. Host factor SPRY domain- and SOCS box-containing protein 2(SPSB2) belongs to SPSB family, and it recruits target proteins by the SPRY domain and forms E3 ubiquitin ligase complexes by the SOCS box. As an adaptor protein, it can regulate the host’s response to infection, but little is known about whether SPSB2 plays a role in HCV replication. In the present study, we found that HCV infection significantly upregulated the mRNA and protein levels of SPSB2 in HCVcc-infected cells. Exogenous expression of SPSB2 in hepatoma cells decreased HCV RNA and protein levels which depended on the SOCS box, while knockdown of endogenous SPSB2 increased HCV RNA and protein levels. Additionally, we demonstrated that SPSB2 interacted with HCV structural protein E1 and nonstructural protein protein 5A (NS5A) via the C-terminal portion of the SPSB2 SPRY domain. Furthermore, SPSB2 induced NS5A ubiquitination and mediated NS5A degradation. Collectively, this study discovered host factor SPSB2 significantly inhibits HCV replication by interacting and degrading NS5A.
Collapse
Affiliation(s)
- Mingzhen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuehong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hailong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiu Xin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiadai Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yao Hao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lingling Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
| | - Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- China Center for Type Culture Collection, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
19
|
Li R, Grimm SA, Mav D, Gu H, Djukovic D, Shah R, Merrick BA, Raftery D, Wade PA. Transcriptome and DNA Methylome Analysis in a Mouse Model of Diet-Induced Obesity Predicts Increased Risk of Colorectal Cancer. Cell Rep 2019; 22:624-637. [PMID: 29346762 PMCID: PMC5793878 DOI: 10.1016/j.celrep.2017.12.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) tends to occur at older age; however, CRC incidence rates have been rising sharply among young age groups. The increasing prevalence of obesity is recognized as a major risk, yet the mechanistic underpinnings remain poorly understood. Using a diet-induced obesity mouse model, we identified obesity-associated molecular changes in the colonic epithelium of young and aged mice, and we further investigated whether the changes were reversed after weight loss. Transcriptome analysis indicated that obesity-related colonic cellular metabolic switch favoring long-chain fatty acid oxidation happened in young mice, while obesity-associated downregulation of negative feedback regulators of pro-proliferative signaling pathways occurred in older mice. Strikingly, colonic DNA methylome was pre-programmed by obesity at young age, priming for a tumor-prone gene signature after aging. Furthermore, obesity-related changes were substantially preserved after short-term weight loss, but they were largely reversed after long-term weight loss. We provided mechanistic insights into increased CRC risk in obesity.
Collapse
Affiliation(s)
- Ruifang Li
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Deepak Mav
- Sciome, LLC, 2 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Ruchir Shah
- Sciome, LLC, 2 Davis Drive, Research Triangle Park, NC 27709, USA
| | - B Alex Merrick
- Biomolecular Screening Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
20
|
Cabrié A, Guittet O, Tomasini R, Vincendeau P, Lepoivre M. Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 2019; 134:617-629. [PMID: 30753884 DOI: 10.1016/j.freeradbiomed.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.
Collapse
Affiliation(s)
- Aimeric Cabrié
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Olivier Guittet
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Richard Tomasini
- CRCM, INSERM, U1068, F-13288, Marseille Cedex 9, France; Paoli-Calmettes Institute, F-13288, Marseille Cedex 9, France; Aix-Marseille University, UM 105, F-13288, Marseille Cedex 9, France; CNRS, UMR7258, F-13288, Marseille Cedex 9, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD/CIRAD "INTERTRYP", Université Bordeaux, F-33000, Bordeaux, France
| | - Michel Lepoivre
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
21
|
Kim HJ, Kim HJ, Kim MK, Bae MK, Sung HY, Ahn JH, Kim YH, Kim SC, Ju W. SPSB1 enhances ovarian cancer cell survival by destabilizing p21. Biochem Biophys Res Commun 2019; 510:364-369. [PMID: 30712944 DOI: 10.1016/j.bbrc.2019.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 11/20/2022]
Abstract
SPRY domain-containing SOCS box protein 1 (SPSB1) is an E3 ligase adaptor protein with unknown functions in cancer cells. In this study, we found that SPSB1 knockdown markedly decreased the viability and migration of ovarian cancer cells, while ectopic SPSB1 overexpression in IL-3-dependent Ba/F3 cells significantly increased their proliferation rate compared with empty vector-transfected cells. SPSB1 knockdown significantly elevated p21 protein and mRNA levels and induced apoptosis in ovarian cancer cells, as evidenced by increased levels of cleaved PARP and decreased levels of Bcl-2. Notably, mechanistic investigations revealed that SPSB1 accelerated p21 destabilization by directly interacting with p21 and promoting its ubiquitin-mediated proteasomal degradation. Taken together, our findings provide novel insights into the role of SPSB1 in ovarian cancer cells.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hye Jin Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Mi-Kyung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Moon Kyoung Bae
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Hye Youn Sung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Yun Hwan Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, South Korea; Innovative Research Center for Control and Prevention of Women's Cancer, Ewha Womans University Mokdong Hospital, Seoul, South Korea.
| |
Collapse
|
22
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
23
|
Liu S, Iaria J, Simpson RJ, Zhu HJ. Ras enhances TGF-β signaling by decreasing cellular protein levels of its type II receptor negative regulator SPSB1. Cell Commun Signal 2018. [PMID: 29534718 PMCID: PMC5850916 DOI: 10.1186/s12964-018-0223-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Transformation by oncogene Ras overcomes TGF-β mediated growth inhibition in epithelial cells. However, it cooperates with each other to mediate epithelial to mesenchymal transition (EMT). The mechanism of how these two pathways interact with each other is controversial. Methods Molecular techniques were used to engineer expression plasmids for Ras, SPRY, TGF-β receptors, type I and II and ubiquitin. Immunoprecipitation and western blots were employed to determine protein-protein interactions, preotein levels, protein phosphorylation while immunofluorecesent staining for molecular co-localization. TGF-β signalling activities is also determined by its luciferase reporter assay. Trans-well assays were used to measure cell migration and invasion. Results Ras interacts with the SPSB1’s SPRY domain to enhance TGF-β signaling. Ras interacts and colocalizes with the TGF-β type II receptor’s (TβRII) negative regulator SPSB1 on the cell membrane, consequently promoting SPSB1 protein degradation via enhanced mono- and di-ubiquitination. Reduced SPSB1 levels result in the stablization of TβRII, in turn the increase of receptor levels significantly enhance Smad2/3 phosphorylation and signaling. Importantly, forced expression of SPSB1 in Ras transformed cells suppresses TGF-β signaling and its mediated migration and invasion. Conclusion Ras positively cooperates with TGF-β signaling by reducing the cellular protein levels of TβRII negative regualtor SPSB1. Electronic supplementary material The online version of this article (10.1186/s12964-018-0223-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Josephine Iaria
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Richard J Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Hong-Jian Zhu
- Department of Surgery (RMH), The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.
| |
Collapse
|
24
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
25
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Okumura F, Joo-Okumura A, Obara K, Petersen A, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2. Mol Biol Cell 2017; 28:3532-3541. [PMID: 28931592 PMCID: PMC5683763 DOI: 10.1091/mbc.e17-07-0450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022] Open
Abstract
Eph receptor tyrosine kinases are important for cancer development and progression as well as in cellular repulsive responses. We determined that SOCS box-containing protein SPSB4 destabilizes EphB2 cytoplasmic fragments. SPSB4 is a novel ubiquitin ligase regulating EphB2-dependent cell repulsive responses. Eph receptor tyrosine kinases and their ephrin ligands are overexpressed in various human cancers, including colorectal malignancies, suggesting important roles in many aspects of cancer development and progression as well as in cellular repulsive responses. The ectodomain of EphB2 receptor is cleaved by metalloproteinases (MMPs) MMP-2/MMP-9 and released into the extracellular space after stimulation by its ligand. The remaining membrane-associated fragment is further cleaved by the presenilin-dependent γ-secretase and releases an intracellular peptide that has tyrosine kinase activity. Although the cytoplasmic fragment is degraded by the proteasome, the responsible ubiquitin ligase has not been identified. Here, we show that SOCS box-containing protein SPSB4 polyubiquitinates EphB2 cytoplasmic fragment and that SPSB4 knockdown stabilizes the cytoplasmic fragment. Importantly, SPSB4 down-regulation enhances cell repulsive responses mediated by EphB2 stimulation. Altogether, we propose that SPSB4 is a previously unidentified ubiquitin ligase regulating EphB2-dependent cell repulsive responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Keisuke Obara
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Alexander Petersen
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Akihiko Nishikimi
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Aichi 464-8602, Japan
| |
Collapse
|
27
|
Rosewick N, Durkin K, Artesi M, Marçais A, Hahaut V, Griebel P, Arsic N, Avettand-Fenoel V, Burny A, Charlier C, Hermine O, Georges M, Van den Broeke A. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat Commun 2017; 8:15264. [PMID: 28534499 PMCID: PMC5457497 DOI: 10.1038/ncomms15264] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukaemia virus type-1 (HTLV-1) and bovine leukaemia virus (BLV) infect T- and B-lymphocytes, respectively, provoking a polyclonal expansion that will evolve into an aggressive monoclonal leukaemia in ∼5% of individuals following a protracted latency period. It is generally assumed that early oncogenic changes are largely dependent on virus-encoded products, especially TAX and HBZ, while progression to acute leukaemia/lymphoma involves somatic mutations, yet that both are independent of proviral integration site that has been found to be very variable between tumours. Here, we show that HTLV-1/BLV proviruses are integrated near cancer drivers which they affect either by provirus-dependent transcription termination or as a result of viral antisense RNA-dependent cis-perturbation. The same pattern is observed at polyclonal non-malignant stages, indicating that provirus-dependent host gene perturbation contributes to the initial selection of the multiple clones characterizing the asymptomatic stage, requiring additional alterations in the clone that will evolve into full-blown leukaemia/lymphoma. Human T-cell leukaemia virus type-1 and bovine leukaemia virus infect T and B lymphocytes and lead to aggressive leukaemia. Here, the authors show these proviruses integrate near cancer drivers perturbing transcription termination or antisense RNA-dependent interaction, suggesting post-transcriptional mechanisms in some cases.
Collapse
Affiliation(s)
- Nicolas Rosewick
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Keith Durkin
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Maria Artesi
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Ambroise Marçais
- Service d'hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance publique hôpitaux de Paris, 149-161 rue de Sèvres, Paris 75010, France
| | - Vincent Hahaut
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Canada S7N 5E3
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization, VIDO-Intervac, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Canada S7N 5E3
| | - Véronique Avettand-Fenoel
- Laboratoire de Virologie, AP-HP, Hôpital Necker-Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, EA7327, 149 rue de Sèvres, Paris 75010, France
| | - Arsène Burny
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, Brussels 1000, Belgium
| | - Carole Charlier
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Olivier Hermine
- Service d'hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance publique hôpitaux de Paris, 149-161 rue de Sèvres, Paris 75010, France.,INSERM U1163-ERL8254, Institut Imagine, 24 B Boulevard du Montparnasse, Paris 75010, France
| | - Michel Georges
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA-R, Université de Liège (ULg), Avenue de l'Hôpital 11, B34, Liège 4000, Belgium.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Boulevard de Waterloo 121, Brussels 1000, Belgium
| |
Collapse
|
28
|
Abstract
EGF, a well-studied mitogen for cancer cells, is revealed to induce an E3 ubiquitin ligase adaptor SPSB1, which recruits the Elongin B/C-Collin complex to trigger ubiquitylation of the negative splicing regulator hnRNP A1. This event is synergized with EGF-activated SR proteins to alter alternative splicing of a key small GTPase Rac1 to enhance cell migration, highlighting converging EGF signals on both negative and positive splicing regulators to jointly promote a key cancer pathway.
Collapse
|
29
|
Liu C, Liu H, Chen J. [The Role of SOCS in the Development of Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:620-5. [PMID: 27666555 PMCID: PMC5972954 DOI: 10.3779/j.issn.1009-3419.2016.09.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Suppressor of cytokine signaling (SOCS) family proteins are a group of negative regulatory factors that plays important roles in the negative regulation of cytokine responses by terminating the activation of the JAK-STAT and other signaling pathways. The family is composed of eight structurally related proteins. mainly through the inhibition of the activation of JAK-STAT signaling pathway and regulates cell proliferation, differentiation and apoptosis. In the process of tumor progression, the promoter CG island hypermethylation, gene mutation, gene deletion and inactivation lead to the abnormal expression of SOCS protein make JAK-STAT continuous activation, resulting in the development and metastasis of tumor. Here, we review the SOCS family members found, composition and molecular structure, the domain of the function, and the latest progress of development in tumor. Based on the important role of SOCS in tumor development, SOCS as a negative regulator factor represent a kind of tumor suppressor genes, has become a new target for tumor therapy.
Collapse
Affiliation(s)
- Chunlai Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China;Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General
Hospital, Tianjin 300052, China
| |
Collapse
|
30
|
Abstract
Transforming growth factor β (TGF-β) family members signal via heterotetrameric complexes of type I and type II dual specificity kinase receptors. The activation and stability of the receptors are controlled by posttranslational modifications, such as phosphorylation, ubiquitylation, sumoylation, and neddylation, as well as by interaction with other proteins at the cell surface and in the cytoplasm. Activation of TGF-β receptors induces signaling via formation of Smad complexes that are translocated to the nucleus where they act as transcription factors, as well as via non-Smad pathways, including the Erk1/2, JNK and p38 MAP kinase pathways, and the Src tyrosine kinase, phosphatidylinositol 3'-kinase, and Rho GTPases.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research Ltd., Science for Life Laboratory, Uppsala University, SE-751 24 Uppsala, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
31
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
32
|
Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets? Biochimie 2016; 122:339-47. [DOI: 10.1016/j.biochi.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/01/2015] [Indexed: 11/18/2022]
|
33
|
Das M, Irvin MR, Sha J, Aslibekyan S, Hidalgo B, Perry RT, Zhi D, Tiwari HK, Absher D, Ordovas JM, Arnett DK. Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study. Front Genet 2015; 6:304. [PMID: 26483836 PMCID: PMC4586504 DOI: 10.3389/fgene.2015.00304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 11/15/2022] Open
Abstract
Fenofibrate lowers triglycerides (TG) and raises high density lipoprotein cholesterol (HDLc) in dyslipidemic individuals. Several studies have shown genetic variability in lipid responses to fenofibrate treatment. It is, however, not known whether epigenetic patterns are also correlated with the changes in lipids due to fenofibrate treatment. The present study was therefore undertaken to examine the changes in DNA methylation among the participants of Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. A total of 443 individuals were studied for epigenome-wide changes in DNA methylation, assessed using the Illumina Infinium HumanMethylation450 array, before and after a 3-week daily treatment with 160 mg of fenofibrate. The association between the change in DNA methylation and changes in TG, HDLc, and low-density lipoprotein cholesterol (LDLc) were assessed using linear mixed models adjusted for age, sex, baseline lipids, and study center as fixed effects and family as a random effect. Changes in DNA methylation were not significantly associated with changes in TG, HDLc, or LDLc after 3 weeks of fenofibrate for any CpG. CpG changes in genes known to be involved in fenofibrate response, e.g., PPAR-α, APOA1, LPL, APOA5, APOC3, CETP, and APOB, also did not show evidence of association. In conclusion, changes in lipids in response to 3-week treatment with fenofibrate were not associated with changes in DNA methylation. Studies of longer duration may be required to detect treatment-induced changes in methylation.
Collapse
Affiliation(s)
- Mithun Das
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Jin Sha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Rodney T Perry
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Degui Zhi
- Department of Biostatistics, Section on Statistical Genetics, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, Section on Statistical Genetics, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| | - Devin Absher
- Absher Laboratory, HudsonAlpha Institute of Biotechnology Huntsville, AL, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|