1
|
Chen H, Li YX, Wong RS, Esseltine JL, Bai D. Genetically engineered human embryonic kidney cells as a novel vehicle for dual patch clamp study of human gap junction channels. Biochem J 2024; 481:741-758. [PMID: 38752978 PMCID: PMC11346430 DOI: 10.1042/bcj20240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.
Collapse
Affiliation(s)
- Honghong Chen
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Yi X. Li
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B 3V6
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
2
|
Yang Y, Zhang Y, Qiao P, Yang B, Jia H, Zhang Y, Zhang J, Su J. SUMO2, a small ubiquitin-like modifier, is essential for development of murine preimplantation embryos. Theriogenology 2021; 166:29-37. [PMID: 33677127 DOI: 10.1016/j.theriogenology.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Small ubiquitin-like modifier 2 (SUMO2) is a small protein that modulates the stability and activity of other proteins. Although a variety of activities have been attributed to SUMO2, its function in preimplantation embryos is still obscure. We first explored the expression of SUMO2 protein in early embryos, and showed that compared with the 2-cell stage, the expression was increased at first, peaked at the 8-cell stage, and then dramatically decreased. To study the function of SUMO2, we used siRNA microinjection to knock down SUMO2.The silencing of SUMO2 significantly reduced the rate of in vitro blastocyst development from 75.56% to 40.60%. Notably, knockdown of SUMO2 (KD) altered the expression of CDX2, OCT4, and NANOG. The number of cells expressing CDX2 decreased, while OCT4 and NANOG were ectopically expressed in siSUMO2 embryos. The global H3K27me3 levels in SUMO2-KD embryos also were lower than in untreated embryos. Taken together, SUMO2 appears to play a significant role in mouse preimplantation embryos probably through key epigenetic modifications and regulation of pluripotency genes.
Collapse
Affiliation(s)
- Ying Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Peipei Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Bin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Huiqun Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jun Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai Province, 810016, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
3
|
Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW. A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. BMC Genomics 2019; 20:386. [PMID: 31101013 PMCID: PMC6525467 DOI: 10.1186/s12864-019-5773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adenovirus protein, Gam1, triggers the proteolytic destruction of the E1 SUMO-activating enzyme. Microinjection of an empirically determined amount of Gam1 mRNA into one-cell Xenopus embryos can reduce SUMOylation activity to undetectable, but nonlethal, levels, enabling an examination of the role of this post-translational modification during early vertebrate development. Results We find that SUMOylation-deficient embryos consistently exhibit defects in neural tube and heart development. We have measured differences in gene expression between control and embryos injected with Gam1 mRNA at three developmental stages: early gastrula (immediately following the initiation of zygotic transcription), late gastrula (completion of the formation of the three primary germ layers), and early neurula (appearance of the neural plate). Although changes in gene expression are widespread and can be linked to many biological processes, three pathways, non-canonical Wnt/PCP, snail/twist, and Ets-1, are especially sensitive to the loss of SUMOylation activity and can largely account for the predominant phenotypes of Gam1 embryos. SUMOylation appears to generate different pools of a given transcription factor having different specificities with this post-translational modification involved in the regulation of more complex, as opposed to housekeeping, processes. Conclusions We have identified changes in gene expression that underlie the neural tube and heart phenotypes resulting from depressed SUMOylation activity. Notably, these developmental defects correspond to the two most frequently occurring congenital birth defects in humans, strongly suggesting that perturbation of SUMOylation, either globally or of a specific protein, may frequently be the origin of these pathologies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle M Bertke
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kyle M Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Laura Cronin
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.,Present Address: Division of Biostatistics and Computational Biology, Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biostatistics, University of Iowa, Iowa City, IA, 52242, USA.,Present Address: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
| |
Collapse
|
4
|
Cox OF, Huber PW. Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Curr Drug Targets 2019; 20:960-969. [PMID: 30362419 PMCID: PMC6700758 DOI: 10.2174/1389450119666181026151802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/02/2023]
Abstract
Post-translational modification by small ubiquitin-like modifier (SUMO) has emerged as a global mechanism for the control and integration of a wide variety of biological processes through the regulation of protein activity, stability and intracellular localization. As SUMOylation is examined in greater detail, it has become clear that the process is at the root of several pathologies including heart, endocrine, and inflammatory disease, and various types of cancer. Moreover, it is certain that perturbation of this process, either globally or of a specific protein, accounts for many instances of congenital birth defects. In order to be successful, practical strategies to ameliorate conditions due to disruptions in this post-translational modification will need to consider the multiple components of the SUMOylation machinery and the extraordinary number of proteins that undergo this modification.
Collapse
Affiliation(s)
- Olivia F. Cox
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, Center for Stem Cells and Regenerative Medicine, University of Notre Dame Notre Dame, Indiana 46556, U.S.A
| |
Collapse
|
5
|
Chakrabarti R, Sanyal S, Ghosh A, Bhar K, Das C, Siddhanta A. Phosphatidylinositol-4-phosphate 5-Kinase 1α Modulates Ribosomal RNA Gene Silencing through Its Interaction with Histone H3 Lysine 9 Trimethylation and Heterochromatin Protein HP1-α. J Biol Chem 2015; 290:20893-20903. [PMID: 26157143 DOI: 10.1074/jbc.m114.633727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide signaling has been implicated in the regulation of numerous cellular processes including cytoskeletal dynamics, cellular motility, vesicle trafficking, and gene transcription. Studies have also shown that nuclear phosphoinositide(s) regulates processes such as mRNA export, cell cycle progression, gene transcription, and DNA repair. We have shown previously that the nuclear form of phosphatidylinositol-4-phosphate 5-kinase 1α (PIP5K), the enzyme responsible for phosphatidylinositol 4,5-bisphosphate synthesis, is modified by small ubiquitin-like modifier (SUMO)-1. In this study, we have shown that due to the site-specific Lys to Ala mutations of PIP5K at Lys-244 and Lys-490, it is unable to localize in the nucleus and nucleolus, respectively. Furthermore, by using chromatin immunoprecipitation assays, we have observed that PIP5K associates with the chromatin silencing complex constituted of H3K9me3 and heterochromatin protein 1α at multiple ribosomal DNA (rDNA) loci. These interactions followed a definite cyclical pattern of occupancy (mostly G1) and release from the rDNA loci (G1/S) throughout the cell cycle. Moreover, the immunoprecipitation results clearly demonstrate that PIP5K SUMOylated at Lys-490 interacts with components of the chromatin silencing machinery, H3K9me3 and heterochromatin protein 1α. However, PIP5K does not interact with the gene activation signature protein H3K4me3. This study, for the first time, demonstrates that PIP5K, an enzyme actively associated with lipid modification pathway, has additional roles in rDNA silencing.
Collapse
Affiliation(s)
| | - Sulagna Sanyal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Amit Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and
| | - Kaushik Bhar
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India.
| | - Anirban Siddhanta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and.
| |
Collapse
|