1
|
Mizzi N, Blundell R. Glycine receptors: Structure, function, and therapeutic implications. Mol Aspects Med 2025; 103:101360. [PMID: 40198976 DOI: 10.1016/j.mam.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025]
Abstract
Glycine receptors are considered as an integral part of higher brain function in mammals. The main function of glycine receptor is fast inhibitory transmission brought about by glycine neurotransmitter, its full agonist. This receptor is part of the glycinergic system which controls key physiological functions such as motor coordination, regulation of the rhythm of respiration and pain signalling. Glycine, a non-essential amino acid, causes hyperpolarisation within the glycine receptor, leading this ion channel to open and allow influx of chloride ion. The glycine receptor is found within the central nervous system and peripheral nervous system. It has also been found within amacrine cells, as well as renal medulla and cortex. The glycine receptor is a pentameric ligand-gated channel, part of the Cys-loop superfamily. It is composed of large ECD, C terminus, transmembrane domain M1-M4, and a 4α:1β glycine receptor subunit stoichiometry. The glycine receptor can be found as either homomeric or heteromeric subtypes. Alpha subtypes are crucial for important physiological functions such as breathing control and nociceptive system processing while the beta subunit aids in glycine receptor clustering and synapse stabilisation with its interaction with gephyrin scaffold protein. When hyperpolarised, the receptor transitions between close, open, and desensitised states. Factors that affect the activity and function of glycine receptors are gephyrin, ivermectin, strychnine and picrotoxin while certain endogenous modulators include partial agonists, positive allosteric modulator, antagonists, and bidirectional modulator are used for pharmacological modulation. Further studies need to be carried out on how glycine receptors are also implicated in chronic pain and nociception, epilepsy, autoimmune diseases and hyperekplexia.
Collapse
Affiliation(s)
- Nicole Mizzi
- Department of Physiology and Biochemistry, University of Malta, MSD 2080, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, University of Malta, MSD 2080, Malta; Molecular Centre for Biotechnology and Biobanking, University of Malta, Msida, MSD 2080, Malta.
| |
Collapse
|
2
|
Yan J, Chen L, Warshel A, Bai C. Exploring the Activation Process of the Glycine Receptor. J Am Chem Soc 2024; 146:26297-26312. [PMID: 39279763 DOI: 10.1021/jacs.4c08489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Glycine receptors (GlyR) conduct inhibitory glycinergic neurotransmission in the spinal cord and the brainstem. They play an important role in muscle tone, motor coordination, respiration, and pain perception. However, the mechanism underlying GlyR activation remains unclear. There are five potential glycine binding sites in α1 GlyR, and different binding patterns may cause distinct activation or desensitization behaviors. In this study, we investigated the coupling of protein conformational changes and glycine binding events to elucidate the influence of binding patterns on the activation and desensitization processes of α1 GlyRs. Subsequently, we explored the energetic distinctions between the apical and lateral pathways during α1 GlyR conduction to identify the pivotal factors in the ion conduction pathway preference. Moreover, we predicted the mutational effects of the key residues and verified our predictions using electrophysiological experiments. For the mutants that can be activated by glycine, the predictions of the mutational directions were all correct. The strength of the mutational effects was assessed using Pearson's correlation coefficient, yielding a value of -0.77 between the calculated highest energy barriers and experimental maximum current amplitudes. These findings contribute to our understanding of GlyR activation, identify the key residues of GlyRs, and provide guidance for mechanistic studies on other pLGICs.
Collapse
Affiliation(s)
- Junfang Yan
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- School of Medicine, Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
3
|
Lummis SCR, Dougherty DA. Expression of Mutant Glycine Receptors in Xenopus Oocytes Using Canonical and Non-Canonical Amino Acids Reveals Distinct Roles of Conserved Proline Residues. MEMBRANES 2022; 12:1012. [PMID: 36295771 PMCID: PMC9607081 DOI: 10.3390/membranes12101012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Pentameric ligand-gated ion channels (pLGIC) play important roles in fast neuronal signal transmission. Functional receptors are pentamers, with each subunit having an extracellular domain (ECD), a transmembrane domain (TMD) and an intracellular domain. The binding of the agonist to the ECD induces a structural change that is transduced to the TMD to open the channel. Molecular details of this process are emerging, but a comprehensive understanding is still lacking. Proline (Pro) is one amino acid that has attracted much interest; its unusual features generate bends in loops and kinks and bulges in helices, which can be essential for function in some pLGICs. Here, we explore the roles of four conserved Pros in the glycine receptor (GlyR), creating substitutions with canonical and noncanonical amino acids, characterizing them using two electrode voltage clamp electrophysiology in Xenopus oocytes, and interpreting changes in receptor parameters using structural data from the open and closed states of the receptor. The data reveal that for efficient function, the Pro in the α1β1 loop is needed to create a turn and to be the correct size and shape to interact with nearby residues; the peptide bond of the Pro in the Cys-loop requires the cis conformation; and the Pros in loop A and M1 allow efficient function because of their reduced hydrogen bonding capacity. These data are broadly consistent with data from other pLGICs, and therefore likely represent the important features of these Pros in all members of the family.
Collapse
Affiliation(s)
- Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dennis A. Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Cerdan AH, Peverini L, Changeux JP, Corringer PJ, Cecchini M. Lateral fenestrations in the extracellular domain of the glycine receptor contribute to the main chloride permeation pathway. SCIENCE ADVANCES 2022; 8:eadc9340. [PMID: 36240268 PMCID: PMC9565810 DOI: 10.1126/sciadv.adc9340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Glycine receptors (GlyRs) are ligand-gated ion channels mediating signal transduction at chemical synapses. Since the early patch-clamp electrophysiology studies, the details of the ion permeation mechanism have remained elusive. Here, we combine molecular dynamics simulations of a zebrafish GlyR-α1 model devoid of the intracellular domain with mutagenesis and single-channel electrophysiology of the full-length human GlyR-α1. We show that lateral fenestrations between subunits in the extracellular domain provide the main translocation pathway for chloride ions to enter/exit a central water-filled vestibule at the entrance of the transmembrane channel. In addition, we provide evidence that these fenestrations are at the origin of current rectification in known anomalous mutants and design de novo two inward-rectifying channels by introducing mutations within them. These results demonstrate the central role of lateral fenestrations on synaptic neurotransmission.
Collapse
Affiliation(s)
- Adrien H. Cerdan
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Laurie Peverini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Jean-Pierre Changeux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, USA
- Collège de France, Paris, France
| | - Pierre-Jean Corringer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Channel-Receptors Unit, Paris, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| |
Collapse
|
5
|
Yong XLH, Zhang L, Yang L, Chen X, Tan JZA, Yu X, Chandra M, Livingstone E, Widagdo J, Vieira MM, Roche KW, Lynch JW, Keramidas A, Collins BM, Anggono V. Regulation of NMDA receptor trafficking and gating by activity-dependent CaMKIIα phosphorylation of the GluN2A subunit. Cell Rep 2021; 36:109338. [PMID: 34233182 PMCID: PMC8313361 DOI: 10.1016/j.celrep.2021.109338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 06/11/2021] [Indexed: 01/23/2023] Open
Abstract
NMDA receptor (NMDAR)-dependent Ca2+ influx underpins multiple forms of synaptic plasticity. Most synaptic NMDAR currents in the adult forebrain are mediated by GluN2A-containing receptors, which are rapidly inserted into synapses during long-term potentiation (LTP); however, the underlying molecular mechanisms remain poorly understood. In this study, we show that GluN2A is phosphorylated at Ser-1459 by Ca2+/calmodulin-dependent kinase IIα (CaMKIIα) in response to glycine stimulation that mimics LTP in primary neurons. Phosphorylation of Ser-1459 promotes GluN2A interaction with the sorting nexin 27 (SNX27)-retromer complex, thereby enhancing the endosomal recycling of NMDARs. Loss of SNX27 or CaMKIIα function blocks the glycine-induced increase in GluN2A-NMDARs on the neuronal membrane. Interestingly, mutations of Ser-1459, including the rare S1459G human epilepsy variant, prolong the decay times of NMDAR-mediated synaptic currents in heterosynapses by increasing the duration of channel opening. These findings not only identify a critical role of Ser-1459 phosphorylation in regulating the function of NMDARs, but they also explain how the S1459G variant dysregulates NMDAR function.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lingrui Zhang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liming Yang
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiumin Chen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Zhi Anson Tan
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaojun Yu
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Livingstone
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Marta M Vieira
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Cerdan AH, Cecchini M. On the Functional Annotation of Open-Channel Structures in the Glycine Receptor. Structure 2021; 28:690-693.e3. [PMID: 32492413 DOI: 10.1016/j.str.2020.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
The glycine receptor (GlyR) is by far the best-characterized pentameric ligand-gated ion channel, with several high-resolution structures from X-ray crystallography, cryoelectron microscopy (cryo-EM), and modeling. Nonetheless, the significance of the currently available open-pore conformations is debated due to their diversity in the pore geometry. Here, we discuss the physiological significance of existing models of the GlyR active state based on conductance and selectivity measurements by computational electrophysiology. The results support the conclusion that the original cryo-EM reconstruction of the active state obtained in detergents as well as its subsequent refinement by molecular dynamics simulations are likely to be non-physiological as they feature artificially dilated ion pores. In addition, the calculations indicate that a physiologically relevant open pore should be constricted within a radius of 2.5 and 2.8 Å, which is consistent with previous modeling, electrophysiology measurements, and the most recent cryo-EM structures obtained in a native lipid membrane environment.
Collapse
Affiliation(s)
- Adrien Henri Cerdan
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France; Channel-Receptors Unit, UMR 3571, CNRS, Institut Pasteur, Paris 75015, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg Cedex 67083, France.
| |
Collapse
|
7
|
Interaction between GABA A receptor α 1 and β 2 subunits at the N-terminal peripheral regions is crucial for receptor binding and gating. Biochem Pharmacol 2020; 183:114338. [PMID: 33189674 DOI: 10.1016/j.bcp.2020.114338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Pentameric ligand gated ion channels (pLGICs) are crucial in electrochemical signaling but exact molecular mechanisms of their activation remain elusive. So far, major effort focused on the top-down molecular pathway between the ligand binding site and the channel gate. However, recent studies revealed that pLGIC activation is associated with coordinated subunit twisting in the membrane plane. This suggests a key role of intersubunit interactions but the underlying mechanisms remain largely unknown. Herein, we investigated a "peripheral" subunit interface region of GABAA receptor where structural modeling indicated interaction between N-terminal α1F14 and β2F31 residues. Our experiments underscored a crucial role of this interaction in ligand binding and gating, especially preactivation and opening, showing that the intersubunit cross-talk taking place outside (above) the top-down pathway can be strongly involved in receptor activation. Thus, described here intersubunit interaction appears to operate across a particularly long distance, affecting vast portions of the macromolecule.
Collapse
|
8
|
Tian Y, Chen S, Shan Q. Charged residues at the pore extracellular half of the glycine receptor facilitate channel gating: a potential role played by electrostatic repulsion. J Physiol 2020; 598:4643-4661. [PMID: 32844405 DOI: 10.1113/jp279288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS The Arg271Gln mutation of the glycine receptor (GlyR) causes hereditary hyperekplexia. This mutation dramatically compromises GlyR function; however, the underlying mechanism is not yet known. This study, by employing function and computation methods, proposes that charged residues (including the Arg residue) at the pore extracellular half from each of the five subunits of the homomeric α1 GlyR, create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This mechanism explains how the Arg271Gln mutation, in which the positively charged Arg residue is substituted by the neutral Gln residue, compromises GlyR function. This study furthers our understanding of the biophysical mechanism underlying the Arg271Gln mutation compromising GlyR function. ABSTRACT The R271(19')Q mutation in the α1 subunit of the glycine receptor (GlyR) chloride channel causes hereditary hyperekplexia. This mutation dramatically compromises channel function; however, the underlying mechanism is not yet known. The R271 residue is located at the extracellular half of the channel pore. In this study, an Arg-scanning mutagenesis was performed at the pore extracellular half from the 262(10') to the 272(20') position on the background of the α1 GlyR carrying the hyperekplexia-causing mutation R271(19')Q. It was found that the placement of the Arg residue rescued channel function to an extent inversely correlated with the distance between the residue and the pore central axis (perpendicular to the plane of the lipid bilayer). Accordingly, it was hypothesized that the placed Arg residues from each of the five subunits of the homomeric α1 GlyR create an electrostatic repulsive potential to widen the pore, thereby facilitating channel opening. This hypothesis was quantitatively verified by theoretical computation via exploiting basic laws of electrostatics and thermodynamics, and further supported by more experimental findings that the placement of another positively charged Lys residue or even a negatively charged Asp residue also rescued channel function in the same manner. This study provides a novel mechanism via which charged residues in the pore region facilitate channel gating, not only for the disease-causing 19'R residue in the GlyR, but also potentially for charged residues in the same region of other ion channels.
Collapse
Affiliation(s)
- Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
9
|
Rossokhin A. The general anesthetic etomidate and fenamate mefenamic acid oppositely affect GABA AR and GlyR: a structural explanation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:591-607. [PMID: 32940715 DOI: 10.1007/s00249-020-01464-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022]
Abstract
GABA and glycine act as inhibitory neurotransmitters in the CNS. Inhibitory neurotransmission is mediated via activation of ionotropic GABAA and glycine receptors. We used a modeling approach to explain the opposite effects of the general anesthetic etomidate (ETM) and fenamate mefenamic acid (MFA) on GABA- and glycine-activated currents recorded in isolated cerebellar Purkinje cells and hippocampal pyramidal neurons, respectively. These drugs potentiated GABAARs but blocked GlyRs. We built a homology model of α1β GlyR based on the cryo-EM structure of open α1 GlyR, used the α1β3γ2 GABAAR structure from the PDB, and applied Monte-Carlo energy minimization to optimize models of receptors and ligand-receptor complexes. In silico docking suggests that ETM/MFA bind at the transmembrane β( +)/α( -) intersubunit interface in GABAAR. Our models predict that the bulky side chain of the highly conserved Arg19' residue at the plus interface side wedges the interface and maintains the conducting receptor state. We hypothesized that MFA/ETM binding at the β( +)/α( -) interface leads to prolongation of receptor life-time in the open state. Having analyzed different GABAAR and GlyR structures available in the PDB, we found that mutual arrangement of the Arg19' and Gln-26' side chains at the plus and minus interface sides, respectively, plays an important role when the receptor switches from the open to closed state. We show that this process is accompanied by narrowing of the intersubunit interfaces, leading to extrusion of the Arg19' side chain from the interface. Our models allow us to explain the lack of GlyR potentiation in our electrophysiological experiments.
Collapse
|
10
|
A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. J Neurosci 2020; 40:4954-4969. [PMID: 32354853 DOI: 10.1523/jneurosci.2490-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors. The novel GLRA1 mutation P366L, located in the TM3-4 loop, showed normal surface expression but reduced chloride currents, and accelerated whole-cell desensitization observed in whole-cell recordings. At the single-channel level, we observed reduced unitary conductance accompanied by spontaneous opening events in the absence of extracellular glycine. Using peptide microarrays and tandem MS-based analysis methods, we show that the proline-rich stretch surrounding P366 mediates binding to syndapin I, an F-BAR domain protein involved in membrane remodeling. The disruption of the noncanonical Src homology 3 recognition motif by P366L reduces syndapin I binding. These data suggest that the GlyRα1 subunit interacts with intracellular binding partners and may therefore play a role in receptor trafficking or synaptic anchoring, a function thus far only ascribed to the GlyRβ subunit. Hence, the P366L GlyRα1 variant exhibits a unique set of properties that cumulatively affect GlyR functionality and thus might explain the neuropathological mechanism underlying hyperekplexia in the mutant carriers. P366L is the first dominant GLRA1 mutation identified within the GlyRα1 TM3-4 loop that affects GlyR physiology without altering protein expression at the whole-cell and surface levels.SIGNIFICANCE STATEMENT We show that the intracellular domain of the inhibitory glycine receptor α1 subunit contributes to trafficking and synaptic anchoring. A proline-rich stretch in this receptor domain forms a noncanonical recognition motif important for the interaction with syndapin I (PACSIN1). The disruption of this motif, as present in a human patient with hyperekplexia led to impaired syndapin I binding. Functional analysis revealed that the altered proline-rich stretch determines several functional physiological parameters of the ion channel (e.g., faster whole-cell desensitization) reduced unitary conductance and spontaneous opening events. Thus, the proline-rich stretch from the glycine receptor α1 subunit represents a multifunctional intracellular protein motif.
Collapse
|
11
|
Atif M, Smith JJ, Estrada-Mondragon A, Xiao X, Salim AA, Capon RJ, Lynch JW, Keramidas A. GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance. PLoS Pathog 2019; 15:e1007570. [PMID: 30695069 PMCID: PMC6368337 DOI: 10.1371/journal.ppat.1007570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Glutamate-gated chloride channel receptors (GluClRs) mediate inhibitory neurotransmission at invertebrate synapses and are primary targets of parasites that impact drastically on agriculture and human health. Ivermectin (IVM) is a broad-spectrum pesticide that binds and potentiates GluClR activity. Resistance to IVM is a major economic and health concern, but the molecular and synaptic mechanisms of resistance are ill-defined. Here we focus on GluClRs of the agricultural endoparasite, Haemonchus contortus. We demonstrate that IVM potentiates inhibitory input by inducing a tonic current that plateaus over 15 minutes and by enhancing post-synaptic current peak amplitude and decay times. We further demonstrate that IVM greatly enhances the active durations of single receptors. These effects are greatly attenuated when endogenous IVM-insensitive subunits are incorporated into GluClRs, suggesting a mechanism of IVM resistance that does not affect glutamate sensitivity. We discovered functional groups of IVM that contribute to tuning its potency at different isoforms and show that the dominant mode of access of IVM is via the cell membrane to the receptor. Glutamate-gated chloride channel receptors (GluClRs) mediate chemoelectric inhibition in invertebrate animals and are targets for broad-spectrum pesticides such as ivermectin. However, resistance to ivermectin threatens the effective control of invertebrates that cause a range of agricultural and human diseases. This study investigates different isoforms of GluClR expressed by the major agricultural endoparasite, Haemonchus contortus, on a synaptic and single receptor level. We discovered that ivermectin enhances synaptic current amplitude and decay and lengthens single receptor activity. Furthermore, ivermectin is less efficacious at GluClRs that incorporate a naturally ivermectin-resistant subunit, suggesting a potential resistance mechanism. Finally, we identify two chemical interactions between the GluClR and ivermectin that determine its potency and show that ivermectin binds to GluClRs via cell membrane interactions.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Jennifer J. Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Xue Xiao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Angela A. Salim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JWL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JWL)
| |
Collapse
|
12
|
Durisic N, Keramidas A, Dixon CL, Lynch JW. SAHA (Vorinostat) Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABA A Receptor γ2 Subunit. Front Mol Neurosci 2018; 11:89. [PMID: 29628874 PMCID: PMC5876238 DOI: 10.3389/fnmol.2018.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2018] [Indexed: 11/22/2022] Open
Abstract
The GABAA receptor (GABAAR) α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat) was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G) known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs) mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile seizures (FS). Given that SAHA is approved by therapeutic regulatory agencies for human use, we propose that it may be worth investigating as a treatment for epilepsies caused by the N40S, R43Q, P44S and R138G mutations. Although SAHA has already been proposed as a therapeutic for patients harbouring the α1A295D epilepsy mutation, the present study extends its potential utility to a new subunit and four new mutations.
Collapse
Affiliation(s)
- Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Christine L Dixon
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Leacock S, Syed P, James VM, Bode A, Kawakami K, Keramidas A, Suster M, Lynch JW, Harvey RJ. Structure/Function Studies of the α4 Subunit Reveal Evolutionary Loss of a GlyR Subtype Involved in Startle and Escape Responses. Front Mol Neurosci 2018; 11:23. [PMID: 29445326 PMCID: PMC5797729 DOI: 10.3389/fnmol.2018.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/16/2018] [Indexed: 01/08/2023] Open
Abstract
Inhibitory glycine receptors (GlyRs) are pentameric ligand-gated anion channels with major roles in startle disease/hyperekplexia (GlyR α1), cortical neuronal migration/autism spectrum disorder (GlyR α2), and inflammatory pain sensitization/rhythmic breathing (GlyR α3). However, the role of the GlyR α4 subunit has remained enigmatic, because the corresponding human gene (GLRA4) is thought to be a pseudogene due to an in-frame stop codon at position 390 within the fourth membrane-spanning domain (M4). Despite this, a recent genetic study has implicated GLRA4 in intellectual disability, behavioral problems and craniofacial anomalies. Analyzing data from sequenced genomes, we found that GlyR α4 subunit genes are predicted to be intact and functional in the majority of vertebrate species—with the exception of humans. Cloning of human GlyR α4 cDNAs excluded alternative splicing and RNA editing as mechanisms for restoring a full-length GlyR α4 subunit. Moreover, artificial restoration of the missing conserved arginine (R390) in the human cDNA was not sufficient to restore GlyR α4 function. Further bioinformatic and mutagenesis analysis revealed an additional damaging substitution at K59 that ablates human GlyR α4 function, which is not present in other vertebrate GlyR α4 sequences. The substitutions K59 and X390 were also present in the genome of an ancient Denisovan individual, indicating that GLRA4 has been a pseudogene for at least 30,000–50,000 years. In artificial synapses, we found that both mouse and gorilla α4β GlyRs mediate synaptic currents with unusually slow decay kinetics. Lastly, to gain insights into the biological role of GlyR α4 function, we studied the duplicated genes glra4a and glra4b in zebrafish. While glra4b expression is restricted to the retina, using a novel tol2-GAL4FF gene trap line (SAIGFF16B), we found that the zebrafish GlyR α4a subunit gene (glra4a) is strongly expressed in spinal cord and hindbrain commissural neurones. Using gene knockdown and a dominant-negative GlyR α4aR278Q mutant, we found that GlyR α4a contributes to touch-evoked escape behaviors in zebrafish. Thus, although GlyR α4 is unlikely to be involved in human startle responses or disease states, this subtype may contribute to escape behaviors in other organisms.
Collapse
Affiliation(s)
- Sophie Leacock
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Parnayan Syed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Victoria M James
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Anna Bode
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics and Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Joseph W Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
14
|
Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A. Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 2017; 13:e1006663. [PMID: 28968469 PMCID: PMC5638611 DOI: 10.1371/journal.ppat.1006663] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022] Open
Abstract
Ivermectin (IVM) is a widely-used anthelmintic that works by binding to and activating glutamate-gated chloride channel receptors (GluClRs) in nematodes. The resulting chloride flux inhibits the pharyngeal muscle cells and motor neurons of nematodes, causing death by paralysis or starvation. IVM resistance is an emerging problem in many pest species, necessitating the development of novel drugs. However, drug optimisation requires a quantitative understanding of GluClR activation and modulation mechanisms. Here we investigated the biophysical properties of homomeric α (avr-14b) GluClRs from the parasitic nematode, H. contortus, in the presence of glutamate and IVM. The receptor proved to be highly responsive to low nanomolar concentrations of both compounds. Analysis of single receptor activations demonstrated that the GluClR oscillates between multiple functional states upon the binding of either ligand. The G36’A mutation in the third transmembrane domain, which was previously thought to hinder access of IVM to its binding site, was found to decrease the duration of active periods and increase receptor desensitisation. On an ensemble macropatch level the mutation gave rise to enhanced current decay and desensitisation rates. Because these responses were common to both glutamate and IVM, and were observed under conditions where agonist binding sites were likely saturated, we infer that G36’A affects the intrinsic properties of the receptor with no specific effect on IVM binding mechanisms. These unexpected results provide new insights into the activation and modulatory mechanisms of the H. contortus GluClRs and provide a mechanistic framework upon which the actions of drugs can be reliably interpreted. IVM is a gold standard anti-parasitic drug that is used extensively to control invertebrate parasites pest species. The drug targets the glutamate-gated chloride channel receptor (GluClR) found on neurons and muscle cells of these organisms, causing paralysis and death. However, IVM resistance is becoming a serious problem in human and animal health, as well as human food production. We provide the first comprehensive investigation of the functional properties of the GluClR of H. contortus, which is a major parasite in grazing animals, such as sheep and goats. We compared glutamate and IVM induced activity of the wild-type and a mutant GluClR, G36’A, that markedly reduces IVM sensitivity in wild populations of pests. Our data demonstrate that the mutation reduces IVM sensitivity by altering the functional properties of the GluClR rather than specifically affecting the binding of IVM, even though the mutation occurs at the IVM binding site. This study provides a mechanistic framework upon which the actions of new candidate anthelmintic drugs can be interpreted.
Collapse
Affiliation(s)
- Mohammed Atif
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Bindi Nguyen
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Joseph W. Lynch
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- * E-mail: (AK); (JL)
| |
Collapse
|
15
|
Zhang Y, Ho TNT, Harvey RJ, Lynch JW, Keramidas A. Structure-Function Analysis of the GlyR α2 Subunit Autism Mutation p.R323L Reveals a Gain-of-Function. Front Mol Neurosci 2017; 10:158. [PMID: 28588452 PMCID: PMC5440463 DOI: 10.3389/fnmol.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Glycine receptors (GlyRs) containing the α2 subunit regulate cortical interneuron migration. Disruption of the GlyR α2 subunit gene (Glra2) in mice leads to disrupted dorsal cortical progenitor homeostasis, leading to a depletion of projection neurons and moderate microcephaly in newborn mice. In humans, rare variants in GLRA2, which is located on the X chromosome, are associated with autism spectrum disorder (ASD) in the hemizygous state in males. These include a microdeletion (GLRA2∆ex8-9) and missense mutations in GLRA2 (p.N109S and p.R126Q) that impair cell-surface expression of GlyR α2, and either abolish or markedly reduce sensitivity to glycine. We report the functional characterization of a third missense variant in GLRA2 (p.R323L), associated with autism, macrocephaly, epilepsy and hypothyroidism in a female proband. Using heterosynapse and macroscopic current recording techniques, we reveal that GlyR α2R323L exhibits reduced glycine sensitivity, but significantly increased inhibitory postsynaptic current (IPSC) rise and decay times. Site-directed mutagenesis revealed that the nature of the amino acid switch at position 323 is critical for impairment of GlyR function. Single-channel recordings revealed that the conductance of α2R323Lβ channels was higher than α2β channels. Longer mean opening durations induced by p.R323L may be due to a change in the gating pathway that enhances the stability of the GlyR open state. The slower synaptic decay times, longer duration active periods and increase in conductance demonstrates that the GlyR α2 p.R323L mutation results in an overall gain of function, and that GlyR α2 mutations can be pathogenic in the heterozygous state in females.
Collapse
Affiliation(s)
- Yan Zhang
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Thi Nhu Thao Ho
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Robert J Harvey
- Department of Pharmacology, UCL School of PharmacyLondon, United Kingdom
| | - Joseph W Lynch
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia.,School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
16
|
Degani-Katzav N, Gortler R, Weissman M, Paas Y. Mutational Analysis at Intersubunit Interfaces of an Anionic Glutamate Receptor Reveals a Key Interaction Important for Channel Gating by Ivermectin. Front Mol Neurosci 2017; 10:92. [PMID: 28428744 PMCID: PMC5382172 DOI: 10.3389/fnmol.2017.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
The broad-spectrum anthelmintic drug ivermectin (IVM) activates and stabilizes an open-channel conformation of invertebrate chloride-selective glutamate receptors (GluClRs), thereby causing a continuous inflow of chloride ions and sustained membrane hyperpolarization. These effects suppress nervous impulses and vital physiological processes in parasitic nematodes. The GluClRs are pentamers. Homopentameric receptors assembled from the Caenorhabditis elegans (C. elegans) GluClα (GLC-1) subunit can inherently respond to IVM but not to glutamate (the neurotransmitter). In contrast, heteromeric GluClα/β (GLC-1/GLC-2) assemblies respond to both ligands, independently of each other. Glutamate and IVM bind at the interface between adjacent subunits, far away from each other; glutamate in the extracellular ligand-binding domain, and IVM in the ion-channel pore periphery. To understand the importance of putative intersubunit contacts located outside the glutamate and IVM binding sites, we introduced mutations at intersubunit interfaces, between these two binding-site types. Then, we determined the effect of these mutations on the activation of the heteromeric mutant receptors by glutamate and IVM. Amongst these mutations, we characterized an α-subunit point mutation located close to the putative IVM-binding pocket, in the extracellular end of the first transmembrane helix (M1). This mutation (αF276A) moderately reduced the sensitivity of the heteromeric GluClαF276A/βWT receptor to glutamate, and slightly decreased the receptor subunits’ cooperativity in response to glutamate. In contrast, the αF276A mutation drastically reduced the sensitivity of the receptor to IVM and significantly increased the receptor subunits’ cooperativity in response to IVM. We suggest that this mutation reduces the efficacy of channel gating, and impairs the integrity of the IVM-binding pocket, likely by disrupting important interactions between the tip of M1 and the M2-M3 loop of an adjacent subunit. We hypothesize that this physical contact between M1 and the M2-M3 loop tunes the relative orientation of the ion-channel transmembrane helices M1, M2 and M3 to optimize pore opening. Interestingly, pre-exposure of the GluClαF276A/βWT mutant receptor to subthreshold IVM concentration recovered the receptor sensitivity to glutamate. We infer that IVM likely retained its positive modulation activity by constraining the transmembrane helices in a preopen orientation sensitive to glutamate, with no need for the aforementioned disrupted interactions between M1 and the M2-M3 loop.
Collapse
Affiliation(s)
- Nurit Degani-Katzav
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Revital Gortler
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Marina Weissman
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan UniversityRamat Gan, Israel
| |
Collapse
|
17
|
Soh MS, Estrada-Mondragon A, Durisic N, Keramidas A, Lynch JW. Probing the Structural Mechanism of Partial Agonism in Glycine Receptors Using the Fluorescent Artificial Amino Acid, ANAP. ACS Chem Biol 2017; 12:805-813. [PMID: 28121133 DOI: 10.1021/acschembio.6b00926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficacy of an agonist at a pentameric ligand-gated ion channel is determined by the rate at which it induces a conformational change from the resting closed state to a preopen ("flip") state. If the ability of an agonist to promote this isomerization is sufficiently low, then it becomes a partial agonist. As partial agonists at pentameric ligand-gated ion channels show considerable promise as therapeutics, understanding the structural basis of the resting-flip-state isomerization may provide insight into therapeutic design. Accordingly, we sought to identify structural correlates of the resting-flip conformational change in the glycine receptor chloride channel. We used nonsense suppression to introduce the small, fluorescent amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP), into specific sites in the extracellular and transmembrane domains. Then, under voltage-clamp conditions in Xenopus oocytes, we simultaneously quantified current and fluorescence responses induced by structurally similar agonists with high, medium, and low efficacies (glycine, β-alanine, and taurine, respectively). Analyzing results from nine ANAP-incorporated sites, we show that glycine receptor activation by agonists with graded efficacies manifests structurally as correspondingly graded movements of the β1-β2 loop, the β8-β9 loop, and the Cys-loop from the extracellular domain and the TM2-TM3 linker in the transmembrane domain. We infer that the resting-flip transition involves an efficacy-dependent molecular reorganization at the extracellular-transmembrane domain interface that primes receptors for efficacious opening.
Collapse
Affiliation(s)
- Ming S. Soh
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Argel Estrada-Mondragon
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nela Durisic
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Angelo Keramidas
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joseph W. Lynch
- Queensland Brain
Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
- School
of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Degani-Katzav N, Klein M, Har-Even M, Gortler R, Tobi R, Paas Y. Trapping of ivermectin by a pentameric ligand-gated ion channel upon open-to-closed isomerization. Sci Rep 2017; 7:42481. [PMID: 28218274 PMCID: PMC5317004 DOI: 10.1038/srep42481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Ivermectin (IVM) is a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. By activating invertebrate pentameric glutamate-gated chloride channels (GluCl receptors; GluClRs), IVM induces sustained chloride influx and long-lasting membrane hyperpolarization that inhibit neural excitation in nematodes. Although IVM activates the C. elegans heteromeric GluClα/β receptor, it cannot activate a homomeric receptor composed of the C. elegans GluClβ subunits. To understand this incapability, we generated a homopentameric α7-GluClβ chimeric receptor that consists of an extracellular ligand-binding domain of an α7 nicotinic acetylcholine receptor known to be potentiated by IVM, and a chloride-selective channel domain assembled from GluClβ subunits. Application of IVM prior to acetylcholine inhibited the responses of the chimeric α7-GluClβR. Adding IVM to activated α7-GluClβRs, considerably accelerated the decline of ACh-elicited currents and stabilized the receptors in a non-conducting state. Determination of IVM association and dissociation rate constants and recovery experiments suggest that, following initial IVM binding to open α7-GluClβRs, the drug induces a conformational change and locks the ion channel in a closed state for a long duration. We further found that IVM also inhibits the activation by glutamate of a homomeric receptor assembled from the C. elegans full-length GluClβ subunits.
Collapse
Affiliation(s)
- Nurit Degani-Katzav
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Moshe Klein
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Moran Har-Even
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Revital Gortler
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ruthi Tobi
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
19
|
Zhang Y, Bode A, Nguyen B, Keramidas A, Lynch JW. Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia. J Biol Chem 2016; 291:15332-41. [PMID: 27226610 DOI: 10.1074/jbc.m116.728592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperekplexia is a rare human neuromotor disorder caused by mutations that impair the efficacy of glycinergic inhibitory neurotransmission. Loss-of-function mutations in the GLRA1 or GLRB genes, which encode the α1 and β glycine receptor (GlyR) subunits, are the major cause. Paradoxically, gain-of-function GLRA1 mutations also cause hyperekplexia, although the mechanism is unknown. Here we identify two new gain-of-function mutations (I43F and W170S) and characterize these along with known gain-of-function mutations (Q226E, V280M, and R414H) to identify how they cause hyperekplexia. Using artificial synapses, we show that all mutations prolong the decay of inhibitory postsynaptic currents (IPSCs) and induce spontaneous GlyR activation. As these effects may deplete the chloride electrochemical gradient, hyperekplexia could potentially result from reduced glycinergic inhibitory efficacy. However, we consider this unlikely as the depleted chloride gradient should also lead to pain sensitization and to a hyperekplexia phenotype that correlates with mutation severity, neither of which is observed in patients with GLRA1 hyperekplexia mutations. We also rule out small increases in IPSC decay times (as caused by W170S and R414H) as a possible mechanism given that the clinically important drug, tropisetron, significantly increases glycinergic IPSC decay times without causing motor side effects. A recent study on cultured spinal neurons concluded that an elevated intracellular chloride concentration late during development ablates α1β glycinergic synapses but spares GABAergic synapses. As this mechanism satisfies all our considerations, we propose it is primarily responsible for the hyperekplexia phenotype.
Collapse
Affiliation(s)
- Yan Zhang
- From the Queensland Brain Institute and
| | - Anna Bode
- From the Queensland Brain Institute and
| | | | | | - Joseph W Lynch
- From the Queensland Brain Institute and School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
20
|
Jaiteh M, Taly A, Hénin J. Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors. PLoS One 2016; 11:e0151934. [PMID: 26986966 PMCID: PMC4795631 DOI: 10.1371/journal.pone.0151934] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/27/2023] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.
Collapse
Affiliation(s)
- Mariama Jaiteh
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Horani S, Stater EP, Corringer PJ, Trudell JR, Harris RA, Howard RJ. Ethanol Modulation is Quantitatively Determined by the Transmembrane Domain of Human α1 Glycine Receptors. Alcohol Clin Exp Res 2015; 39:962-8. [PMID: 25973519 DOI: 10.1111/acer.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutagenesis and labeling studies have identified amino acids from the human α1 glycine receptor (GlyR) extracellular, transmembrane (TM), and intracellular domains in mediating ethanol (EtOH) potentiation. However, limited high-resolution structural data for physiologically relevant receptors in this Cys-loop receptor superfamily have made pinpointing the critical amino acids difficult. Homologous ion channels from lower organisms provide conserved models for structural and functional properties of Cys-loop receptors. We previously demonstrated that a single amino acid variant of the Gloeobacter violaceus ligand-gated ion channel (GLIC) produced EtOH and anesthetic sensitivity similar to that of GlyRs and provided crystallographic evidence for EtOH binding to GLIC. METHODS We directly compared EtOH modulation of the α1 GlyR and GLIC to a chimera containing the TM domain from human α1 GlyRs and the ligand-binding domain of GLIC using 2-electrode voltage-clamp electrophysiology of receptors expressed in Xenopus laevis oocytes. RESULTS EtOH potentiated α1 GlyRs in a concentration-dependent manner in the presence of zinc-chelating agents, but did not potentiate GLIC at pharmacologically relevant concentrations. The GLIC/GlyR chimera recapitulated the EtOH potentiation of GlyRs, without apparent sensitivity to zinc chelation. For chimera expression in oocytes, it was essential to suppress leakage current by adding 50 μM picrotoxin to the media, a technique that may have applications in expression of other ion channels. CONCLUSIONS Our results are consistent with a TM mechanism of EtOH modulation in Cys-loop receptors. This work highlights the relevance of bacterial homologs as valuable model systems for studying ion channel function of human receptors and demonstrates the modularity of these channels across species.
Collapse
Affiliation(s)
- Suzzane Horani
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Evan P Stater
- Chemistry Department , Skidmore College, Saratoga Springs, New York
| | - Pierre-Jean Corringer
- Channel-Receptor Research Group , Pasteur Institute, Bâtiment Fernbach, Paris, France
| | - James R Trudell
- Department of Anesthesia , Stanford University School of Medicine, Stanford, California
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Rebecca J Howard
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas.,Chemistry Department , Skidmore College, Saratoga Springs, New York
| |
Collapse
|