1
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
2
|
Kim G, Lee SG, Han S, Jung J, Jeong HS, Hyun JK, Rhee DK, Kim HM, Lee S. ClpL is a functionally active tetradecameric AAA+ chaperone, distinct from hexameric/dodecameric ones. FASEB J 2020; 34:14353-14370. [PMID: 32910525 DOI: 10.1096/fj.202000843r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023]
Abstract
AAA+ (ATPases associated with diverse cellular activities) chaperones are involved in a plethora of cellular activities to ensure protein homeostasis. The function of AAA+ chaperones is mostly modulated by their hexameric/dodecameric quaternary structures. Here we report the structural and biochemical characterizations of a tetradecameric AAA+ chaperone, ClpL from Streptococcus pneumoniae. ClpL exists as a tetradecamer in solution in the presence of ATP. The cryo-EM structure of ClpL at 4.5 Å resolution reveals a striking tetradecameric arrangement. Solution structures of ClpL derived from small-angle X-ray scattering data suggest that the tetradecameric ClpL could assume a spiral conformation found in active hexameric/dodecameric AAA+ chaperone structures. Vertical positioning of the middle domain accounts for the head-to-head arrangement of two heptameric rings. Biochemical activity assays with site-directed mutagenesis confirmed the critical roles of residues both in the integrity of the tetradecameric arrangement and activities of ClpL. Non-conserved Q321 and R670 are crucial in the heptameric ring assembly of ClpL. These results establish that ClpL is a functionally active tetradecamer, clearly distinct from hexameric/dodecameric AAA+ chaperones.
Collapse
Affiliation(s)
- Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | | | - Jae-Kyung Hyun
- Korea Basic Science Institute, Cheongju, Korea.,Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
3
|
Rydzek S, Shein M, Bielytskyi P, Schütz AK. Observation of a Transient Reaction Intermediate Illuminates the Mechanochemical Cycle of the AAA-ATPase p97. J Am Chem Soc 2020; 142:14472-14480. [DOI: 10.1021/jacs.0c03180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Rydzek
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Mikhail Shein
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Pavlo Bielytskyi
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Anne K. Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Sugita S, Watanabe K, Hashimoto K, Niwa T, Uemura E, Taguchi H, Watanabe YH. Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation. J Biol Chem 2018; 293:19228-19239. [PMID: 30327424 DOI: 10.1074/jbc.ra118.005496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/11/2018] [Indexed: 11/06/2022] Open
Abstract
ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), ClpB forms a hexameric ring structure, with each protomer containing two AAA+ modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring. The MD is subdivided into two oppositely directed short coiled-coils, called motif-1 and motif-2. The MD represses the ATPase activity of ClpB, and this repression is reversed by the binding of DnaK to motif-2. To better understand how the MD regulates ClpB activity, here we investigated the roles of motif-1 in ClpB from Thermus thermophilus (TClpB). Using systematic alanine substitution of the conserved charged residues, we identified functionally important residues in motif-1, and using a photoreactive cross-linker and LC-MS/MS analysis, we further explored potential interacting residues. Moreover, we constructed TClpB mutants in which functionally important residues in motif-1 and in other candidate regions were substituted by oppositely charged residues. These analyses revealed that the intra-subunit pair Glu-401-Arg-532 and the inter-subunit pair Asp-404-Arg-180 are functionally important, electrostatically interacting pairs. Considering these structural findings, we conclude that the Glu-401-Arg-532 interaction shifts the equilibrium of the MD conformation to stabilize the activated form and that the Arg-180-Asp-404 interaction contributes to intersubunit signal transduction, essential for ClpB chaperone activities.
Collapse
Affiliation(s)
- Saori Sugita
- From the Department of Biology, Faculty of Science and Engineering and
| | - Kumiko Watanabe
- From the Department of Biology, Faculty of Science and Engineering and
| | - Kana Hashimoto
- From the Department of Biology, Faculty of Science and Engineering and
| | - Tatsuya Niwa
- the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Eri Uemura
- the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Taguchi
- the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yo-Hei Watanabe
- From the Department of Biology, Faculty of Science and Engineering and .,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501 and
| |
Collapse
|
5
|
Uchihashi T, Watanabe YH, Nakazaki Y, Yamasaki T, Watanabe H, Maruno T, Ishii K, Uchiyama S, Song C, Murata K, Iino R, Ando T. Dynamic structural states of ClpB involved in its disaggregation function. Nat Commun 2018; 9:2147. [PMID: 29858573 PMCID: PMC5984625 DOI: 10.1038/s41467-018-04587-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
The ATP-dependent bacterial protein disaggregation machine, ClpB belonging to the AAA+ superfamily, refolds toxic protein aggregates into the native state in cooperation with the cognate Hsp70 partner. The ring-shaped hexamers of ClpB unfold and thread its protein substrate through the central pore. However, their function-related structural dynamics has remained elusive. Here we directly visualize ClpB using high-speed atomic force microscopy (HS-AFM) to gain a mechanistic insight into its disaggregation function. The HS-AFM movies demonstrate massive conformational changes of the hexameric ring during ATP hydrolysis, from a round ring to a spiral and even to a pair of twisted half-spirals. HS-AFM observations of Walker-motif mutants unveil crucial roles of ATP binding and hydrolysis in the oligomer formation and structural dynamics. Furthermore, repressed and hyperactive mutations result in significantly different oligomeric forms. These results provide a comprehensive view for the ATP-driven oligomeric-state transitions that enable ClpB to disentangle protein aggregates. The bacterial protein disaggregation machine ClpB uses ATP to generate mechanical force to unfold and thread its protein substrates. Here authors visualize the ClpB ring using high-speed atomic force microscopy and capture conformational changes of the hexameric ring during the ATPase reaction.
Collapse
Affiliation(s)
- Takayuki Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yo-Hei Watanabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan. .,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.
| | - Yosuke Nakazaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Takashi Yamasaki
- Department of Biology, Faculty of Science and Engineering, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan.,Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe, 658-8501, Japan
| | - Hiroki Watanabe
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Kentaro Ishii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan. .,Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, 240-0193, Japan.
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
6
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
7
|
Franke KB, Bukau B, Mogk A. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase. Front Mol Biosci 2017; 4:6. [PMID: 28275610 PMCID: PMC5319980 DOI: 10.3389/fmolb.2017.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings.
Collapse
Affiliation(s)
- Kamila B Franke
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany
| |
Collapse
|
8
|
Baytshtok V, Chen J, Glynn SE, Nager AR, Grant RA, Baker TA, Sauer RT. Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem 2017; 292:5695-5704. [PMID: 28223361 DOI: 10.1074/jbc.m116.768978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/07/2017] [Indexed: 11/06/2022] Open
Abstract
The HslUV proteolytic machine consists of HslV, a double-ring self-compartmentalized peptidase, and one or two AAA+ HslU ring hexamers that hydrolyze ATP to power the unfolding of protein substrates and their translocation into the proteolytic chamber of HslV. Here, we use genetic tethering and disulfide bonding strategies to construct HslU pseudohexamers containing mixtures of ATPase active and inactive subunits at defined positions in the hexameric ring. Genetic tethering impairs HslV binding and degradation, even for pseudohexamers with six active subunits, but disulfide-linked pseudohexamers do not have these defects, indicating that the peptide tether interferes with HslV interactions. Importantly, pseudohexamers containing different patterns of hydrolytically active and inactive subunits retain the ability to unfold protein substrates and/or collaborate with HslV in their degradation, supporting a model in which ATP hydrolysis and linked mechanical function in the HslU ring operate by a probabilistic mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Tania A Baker
- From the Department of Biology and.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | |
Collapse
|
9
|
Kłosowska A, Chamera T, Liberek K. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation. eLife 2016; 5. [PMID: 27223323 PMCID: PMC4927293 DOI: 10.7554/elife.15159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 01/12/2023] Open
Abstract
Hsp104 disaggregase provides thermotolerance in yeast by recovering proteins from aggregates in cooperation with the Hsp70 chaperone. Protein disaggregation involves polypeptide extraction from aggregates and its translocation through the central channel of the Hsp104 hexamer. This process relies on adenosine triphosphate (ATP) hydrolysis. Considering that Hsp104 is characterized by low affinity towards ATP and is strongly inhibited by adenosine diphosphate (ADP), we asked how Hsp104 functions at the physiological levels of adenine nucleotides. We demonstrate that physiological levels of ADP highly limit Hsp104 activity. This inhibition, however, is moderated by the Hsp70 chaperone, which allows efficient disaggregation by supporting Hsp104 binding to aggregates but not to non-aggregated, disordered protein substrates. Our results point to an additional level of Hsp104 regulation by Hsp70, which restricts the potentially toxic protein unfolding activity of Hsp104 to the disaggregation process, providing the yeast protein-recovery system with substrate specificity and efficiency in ATP consumption. DOI:http://dx.doi.org/10.7554/eLife.15159.001 Under stressful conditions, such as high temperatures, many proteins lose their proper structure and clump together to form large irregular aggregates. To combat this effect, living organisms exposed to stress produce specialized proteins called chaperones, which can rescue the damaged proteins from aggregates. Studies into this “disaggregation” process often use budding yeast as a model organism. The protein-recovery machinery in this yeast is composed of a ring-shaped enzyme called Hsp104, together with a chaperone called Hsp70 and its partner Hsp40. The Hsp104 enzyme converts molecules of ATP into ADP and uses the energy released from the reaction to move, or “translocate”, damaged proteins through its central channel and release them from the aggregates. Previous studies had reported that ADP negatively affects Hsp104. Now, Kłosowska et al show that Hsp104 is almost inactive in a test-tube if the concentration of ADP is as high as that found inside a cell. This raises a question: how can Hsp104 efficiently remove proteins from aggregates in cells if the conditions are so unfavorable? Using purified proteins, Kłosowska et al. go on to show that Hsp104 is able to tolerate the level of ADP found inside cells thanks to the Hsp70 chaperone. The experiments show that ADP weakens Hsp104’s ability to bind proteins while Hsp70 supports this ability and counteracts the negative effect of ADP. Further experiments demonstrate that Hsp104 is less affected by ADP, and binds more readily to ATP, when it is translocating proteins. These findings explain how the yeast disaggregating machinery can work even at relatively high concentrations of ADP, and reveal a new control mechanism in the disaggregation process. Many important proteins have poorly organized fragments that can be recognized by Hsp104, and if Hsp104 was to bind to and translocate these proteins it could harm the cell. The findings of Kłosowska et al. suggest that Hsp70 helps Hsp104 to specifically bind to and act upon proteins in aggregates, while binding to partly unstructured proteins is limited by the high ADP concentration. Further studies are now needed to understand how the protein-recovery machinery can discriminate between aggregated and non-aggregated proteins. DOI:http://dx.doi.org/10.7554/eLife.15159.002
Collapse
Affiliation(s)
- Agnieszka Kłosowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Chamera
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Arch Biochem Biophys 2015; 580:121-34. [PMID: 26159839 DOI: 10.1016/j.abb.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022]
Abstract
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.
Collapse
|
11
|
Mogk A, Kummer E, Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2015; 2:22. [PMID: 26042222 PMCID: PMC4436881 DOI: 10.3389/fmolb.2015.00022] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Eva Kummer
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|