1
|
Cryo-EM structure of human hexameric MCM2-7 complex. iScience 2022; 25:104976. [PMID: 36117988 PMCID: PMC9475327 DOI: 10.1016/j.isci.2022.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The central step in the initiation of eukaryotic DNA replication is the loading of the minichromosome maintenance 2–7 (MCM2-7) complex, the core of the replicative DNA helicase, onto chromatin at replication origin. Here, we reported the cryo-EM structure of endogenous human single hexameric MCM2-7 complex with a resolution at 4.4 Å, typically an open-ring hexamer with a gap between Mcm2 and Mcm5. Strikingly, further analysis revealed that human MCM2-7 can self-associate to form a loose double hexamer which potentially implies a novel mechanism underlying the MCM2-7 loading in eukaryote. The high-resolution cryo-EM structure of human MCM2-7 is critical for understanding the molecular mechanisms governing human DNA replication, especially the MCM2-7 chromatin loading and pre-replicative complex assembly. A Twin-Strep-Tag II tag was fused to Mcm4 by using CRISPR-Cas9 technique The endogenous human MCM2-7 complex was successfully purified The high-resolution cryo-EM structure of human hexameric MCM2-7 complex The human single MCM2-7 hexamer can self-associate to form a double hexamer
Collapse
|
2
|
|
3
|
Cannone G, Visentin S, Palud A, Henneke G, Spagnolo L. Structure of an octameric form of the minichromosome maintenance protein from the archaeon Pyrococcus abyssi. Sci Rep 2017; 7:42019. [PMID: 28176822 PMCID: PMC5296750 DOI: 10.1038/srep42019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.
Collapse
Affiliation(s)
- Giuseppe Cannone
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- Centre for Science at extreme conditions, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3JR, UK
| | - Silvia Visentin
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
- School of Biological Sciences and Max Born Crescent, Edinburgh EH9 3JR, UK
- ISIS neutron source, Science and Technologies Research Council, Rutherford Appleton Laboratories, Harwell, OX11 0QX United Kingdom
| | - Adeline Palud
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Ghislaine Henneke
- IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, ZI de la pointe du diable CS 10070 29280 Plouzané, France
- Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
- CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, rue Dumont d’Urville 29280 Plouzané, France
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Boskovic J, Bragado-Nilsson E, Saligram Prabhakar B, Yefimenko I, Martínez-Gago J, Muñoz S, Méndez J, Montoya G. Molecular architecture of the recombinant human MCM2-7 helicase in complex with nucleotides and DNA. Cell Cycle 2016; 15:2431-40. [PMID: 27249176 DOI: 10.1080/15384101.2016.1191712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.
Collapse
Affiliation(s)
- Jasminka Boskovic
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Elisabeth Bragado-Nilsson
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Bhargrav Saligram Prabhakar
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| | - Igor Yefimenko
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Jaime Martínez-Gago
- a Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Macromolecular Crystallography Group , c/Melchor Fdez. Almagro 3, Madrid , Spain
| | - Sergio Muñoz
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Juan Méndez
- c DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Guillermo Montoya
- b Protein Structure & Function Programme, Novo Nordisk Foundation Centre for Protein Research, Faculty of Heath and Medical Sciences, University of Copenhagen , Denmark
| |
Collapse
|
5
|
Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016; 100:3-15. [PMID: 26931652 PMCID: PMC4854231 DOI: 10.1016/j.ymeth.2016.02.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150 kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a ‘resolution revolution’, owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM.
Collapse
Affiliation(s)
- Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Matt Walker
- MLW Consulting, 11 Race Hill, Launceston, Cornwall PL15 9BB, United Kingdom
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
6
|
Abstract
DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2-7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2-7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.
Collapse
|