1
|
Ayela B, Heis F, Poisson T, Pannecoucke X, Fournel‐Gigleux S, Gulberti S, Lopin‐Bon C. Synthetic Modifications of the Linkage Region of Proteoglycans and Impact on CSGalNAcT‐1. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamin Ayela
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres BP 6759, 45067 Orléans Cedex 2 France
| | - Floriane Heis
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres BP 6759, 45067 Orléans Cedex 2 France
| | - Thomas Poisson
- Normandie Université COBRA UMR 6014 et FR 3038 Université de Rouen INSA Rouen; CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Xavier Pannecoucke
- Normandie Université COBRA UMR 6014 et FR 3038 Université de Rouen INSA Rouen; CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Sylvie Fournel‐Gigleux
- UMR 7365 CNRS-Université de Lorraine 9 Avenue de la Forêt de Haye BP 20199–54505 Vandœuvre-Lès-Nancy Cedex France
| | - Sandrine Gulberti
- UMR 7365 CNRS-Université de Lorraine 9 Avenue de la Forêt de Haye BP 20199–54505 Vandœuvre-Lès-Nancy Cedex France
| | - Chrystel Lopin‐Bon
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres BP 6759, 45067 Orléans Cedex 2 France
| |
Collapse
|
2
|
Gao J, Huang X. Recent advances on glycosyltransferases involved in the biosynthesis of the proteoglycan linkage region. Adv Carbohydr Chem Biochem 2021; 80:95-119. [PMID: 34872657 DOI: 10.1016/bs.accb.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteoglycans (PGs) are an essential family of glycoproteins, which can play roles in many important biological events including cell proliferation, cancer development, and pathogen infections. Proteoglycans consist of a core protein with one or multiple glycosaminoglycan (GAG) chains, which are covalently attached to serine residues of serine-glycine dipeptide within the core protein through a common tetrasaccharide linkage. In the past three decades, four key glycosyl transferases involved in the biosynthesis of PG linkage have been discovered and investigated. This review aims to provide an overview on progress made on these four enzymes, with foci on enzyme expression/purification, substrate specificity, activity determination, product characterization, and structure-activity relationship analysis.
Collapse
Affiliation(s)
- Jia Gao
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
3
|
Cai D, Bian Y, Wu S, Ding K. Conformation-Controlled Hydrogen-Bond-Mediated Aglycone Delivery Method for α-Xylosylation. J Org Chem 2021; 86:9945-9960. [PMID: 34292734 DOI: 10.1021/acs.joc.1c00187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
α-Xylosylated glycans and xylosyl derivatives are biomedically important molecules which show numerous bioactivities against infection, cancer, inflammation, and so on. Lacking an efficient α-xylosylation method, the synthesis of α-xyloside-containing molecules was full of challenges. Herein, a robust method is presented for selective α-xylosylation via combination of a rare conformation-controlled strategy and the hydrogen-bond-mediated aglycone delivery method. Various native branched α-xyloside structures necessitate an orthogonally protected xyloside, and a three-pot preparation method of the xylosyl donor was developed for this novel α-xylosylation method, which was further applied in the first synthesis of the side chain N of xyloglucan. This work provides an efficient α-xylosylation method which would make various α-xyloside structures achievable. The conformation-controlled strategy also has important reference to the chemistry of five-carbon pyranose.
Collapse
Affiliation(s)
- Deqin Cai
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Wu
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- University of Chinese Academy of Sciences, Beijing 100049, China.,Glycochemistry and Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
4
|
Gao J, Lin PH, Nick ST, Huang J, Tykesson E, Ellervik U, Li L, Huang X. Chemoenzymatic Synthesis of Glycopeptides Bearing Galactose-Xylose Disaccharide from the Proteoglycan Linkage Region. Org Lett 2021; 23:1738-1741. [PMID: 33576634 PMCID: PMC8116978 DOI: 10.1021/acs.orglett.1c00168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteoglycans have important biological activities. To improve the overall synthetic efficiency, a new chemoenzymatic route has been established for the proteoglycan linkage region bearing a galactose-xylose disaccharide. The xylosylated glycopeptides were synthesized via solid phase synthesis, which was followed by the addition of the galactose unit by the galactosyl transferase β4GalT7. This work leads to a better understanding of the acceptor preference of β4GalT7 and opens the door for expeditious synthesis of the proteoglycan linkage region.
Collapse
Affiliation(s)
| | | | | | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, Lund 221 00, Sweden
| | - Ulf Ellervik
- Department of Chemistry, Lund University, Lund 221 00, Sweden
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53705, United States
| | | |
Collapse
|
5
|
Kalita M, Villanueva-Meyer J, Ohkawa Y, Kalyanaraman C, Chen K, Mohamed E, Parker MFL, Jacobson MP, Phillips JJ, Evans MJ, Wilson DM. Synthesis and Screening of α-Xylosides in Human Glioblastoma Cells. Mol Pharm 2021; 18:451-460. [PMID: 33315406 PMCID: PMC8483608 DOI: 10.1021/acs.molpharmaceut.0c00839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and β-1,4-galactosyltransferase-7 (β-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-β-xylosides inhibited β-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or β-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and β-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 μM (drug), and U87 cells at IC50 = 10.57 μM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus β-nitro xyloside conformer to XYLT-1 and β-GALT-7 enzymes.
Collapse
Affiliation(s)
- Mausam Kalita
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Neurological Surgery, Brain Tumor Center University of California, San Francisco, San Francisco, California 94158, United States
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Yuki Ohkawa
- Department of Neurological Surgery, Brain Tumor Center University of California, San Francisco, San Francisco, California 94158, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Katharine Chen
- Department of Neurological Surgery, Brain Tumor Center University of California, San Francisco, San Francisco, California 94158, United States
| | - Esraa Mohamed
- Department of Neurological Surgery, Brain Tumor Center University of California, San Francisco, San Francisco, California 94158, United States
| | - Matthew F L Parker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Center University of California, San Francisco, San Francisco, California 94158, United States
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Pathology, Division of Neuropathology University of California, San Francisco, San Francisco, California 94143, United States
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Mastio R, Willén D, Söderlund Z, Westergren-Thorsson G, Manner S, Tykesson E, Ellervik U. Fluorescently labeled xylosides offer insight into the biosynthetic pathways of glycosaminoglycans. RSC Adv 2021; 11:38283-38292. [PMID: 35498069 PMCID: PMC9044174 DOI: 10.1039/d1ra06320k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Five novel xylosides tagged with the fluorescent probe Pacific Blue™ were synthesized and found to act as substrates for β4GalT7, a bottleneck enzyme in the biosynthetic pathways leading to glycosaminoglycans. By confocal microscopy of A549 cells, we showed that the xylosides were taken up by the cells, but did not enter the Golgi apparatus where most of the glycosaminoglycan biosynthesis occurs. Instead, after a possible double galactosylation by β4GalT7 and β3GalT6, the biosynthesis was terminated. We hypothesize this is due to the charge of the fluorescent probe, which is required for fluorescent ability and stability under physiological conditions. Fluorescently labeled xylosides are taken up by cells and initiate priming of labeled GAG chains of various length.![]()
Collapse
Affiliation(s)
- Roberto Mastio
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Daniel Willén
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Zackarias Söderlund
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| | | | - Sophie Manner
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Emil Tykesson
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| | - Ulf Ellervik
- Centre for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P. O. Box 124, SE-221 00 Lund, Sweden
- Department of Experimental Medical Science, Lund University, P. O. Box 117, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Ledru H, Ayela B, Fournel-Gigleux S, Gulberti S, Lopin-Bon C. Synthesis of oligosaccharides of the linkage region of proteoglycans using regioselective glycosylation. Org Biomol Chem 2020; 18:4831-4842. [PMID: 32608461 DOI: 10.1039/d0ob00783h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. Biosynthesis of PGs is complex and involves a large number of glycosyltranferases. We report herein for the first time the synthesis of a collection of various sulfoforms of the disaccharide GlcA-1,3-β-d-Gal and trisaccharides GlcNAc-1,4-α-d-GlcA-1,3-β-d-Gal and GalNAc-1,4-β-d-GlcA-1,3-β-d-Gal using a regioselective glycosylation. Preliminary results on the impact of sulfation of these disaccharides upon recombinant chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) involved in chondroitin sulfate chain initiation is also reported.
Collapse
Affiliation(s)
- Hélène Ledru
- Univ. Orléans et CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Benjamin Ayela
- Univ. Orléans et CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Sylvie Fournel-Gigleux
- UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex, France.
| | - Sandrine Gulberti
- UMR 7365 CNRS-Université de Lorraine, Biopôle-Faculté de Médecine, CS 50184, 54505 Vandoeuvre-lès-Nancy Cedex, France.
| | | |
Collapse
|
8
|
Xu W, Liu Z, Ren H, Peng X, Wu A, Ma D, Liu G, Liu L. Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 2020; 11:441-449. [PMID: 31897239 PMCID: PMC6930419 DOI: 10.7150/jca.30923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma, caused by carcinogenesis of brain and spinal glial cells, is the most common primary malignant brain tumor. To find the important indicator for glioma prognosis is still a challenge and the metabolic alteration of glioma has been frequently reported recently. Methods: In our current work, a risk score model based on the expression of twenty metabolic genes was developed using the metabolic gene expressions in The Cancer Genome Atlas (TCGA) dataset, the methods of which included the cox multivariate regression and the random forest variable hunting, a kind of machine learning algorithm, and the risk score generated from this model is used to make predictions in the survival of glioma patients in the training dataset. Subsequently, the result was further verified in other three verification sets (GSE4271, GSE4412 and GSE16011). Risk score related pathways collected in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were identified using Gene Set Enrichment Analysis (GSEA). Results: The risk score generated from our model makes good predictions in the survival of glioma patients in the training dataset and other three verification sets. By assessing the relationships between clinical indicators and the risk score, we found that the risk score was an independent and significant indicator for the prognosis of glioma patients. Simultaneously, we conducted a survival analysis of the patients who received chemotherapy and who did not, finding that the risk score was equally valid in both cases. And signaling pathways related to the genesis and development of multiple cancers were also identified. Conclusions: In summary, our risk score model is predictive for 967 glioma patients' survival from four independent datasets, and the risk score is a meaningful and independent parameter of the clinicopathological information.
Collapse
Affiliation(s)
- Wenfang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Zhenhao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - He Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Xueqing Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Aoshen Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| |
Collapse
|
9
|
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E80. [PMID: 31362364 PMCID: PMC6789896 DOI: 10.3390/medicines6030080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
The polyanionic nature and the ability to interact with proteins with different affinities are properties of sulfated glycosaminoglycans (GAGs) that determine their biological function. In designing drugs affecting the interaction of proteins with GAGs the challenge has been to generate agents with high binding specificity. The example to emulated has been a heparin-derived pentasaccharide that binds to antithrombin-III with high affinity. However, the portability of this model to other biological situations is questioned on several accounts. Because of their structural flexibility, oligosaccharides with different sulfation and uronic acid conformation can display the same binding proficiency to different proteins and produce comparable biological effects. This circumstance represents a formidable obstacle to the design of drugs based on the heparin scaffold. The conceptual framework discussed in this article is that through a direct intervention on the heparin-binding functionality of proteins is possible to achieve a high degree of action specificity. This objective is currently pursued through two strategies. The first makes use of small molecules for which in the text we provide examples from past and present literature concerning angiogenic factors and enzymes. The second approach entails the mutagenesis of the GAG-binding site of proteins as a means to generate a new class of biologics of therapeutic interest.
Collapse
Affiliation(s)
- Giancarlo Ghiselli
- Independent Researcher, 1326 Spruce Street Suite 706, Philadephia, PA 19107, USA.
| |
Collapse
|
10
|
Harrus D, Kellokumpu S, Glumoff T. Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers. Cell Mol Life Sci 2018; 75:833-848. [PMID: 28932871 PMCID: PMC11105277 DOI: 10.1007/s00018-017-2659-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
Glycosyltransferases (GTases) transfer sugar moieties to proteins, lipids or existing glycan or polysaccharide molecules. GTases form an important group of enzymes in the Golgi, where the synthesis and modification of glycoproteins and glycolipids take place. Golgi GTases are almost invariably type II integral membrane proteins, with the C-terminal globular catalytic domain residing in the Golgi lumen. The enzymes themselves are divided into 103 families based on their sequence homology. There is an abundance of published crystal structures of GTase catalytic domains deposited in the Protein Data Bank (PDB). All of these represent either of the two main characteristic structural folds, GT-A or GT-B, or present a variation thereof. Since GTases can function as homomeric or heteromeric complexes in vivo, we have summarized the structural features of the dimerization interfaces in crystal structures of GTases, as well as considered the biochemical data available for these enzymes. For this review, we have considered all 898 GTase crystal structures in the Protein Data Bank and highlight the dimer formation characteristics of various GTases based on 24 selected structures.
Collapse
Affiliation(s)
- Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, 90014, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, 90014, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
11
|
Thorsheim K, Willén D, Tykesson E, Ståhle J, Praly JP, Vidal S, Johnson MT, Widmalm G, Manner S, Ellervik U. Naphthyl Thio- and Carba-xylopyranosides for Exploration of the Active Site of β-1,4-Galactosyltransferase 7 (β4GalT7). Chemistry 2017; 23:18057-18065. [DOI: 10.1002/chem.201704267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Karin Thorsheim
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Daniel Willén
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Emil Tykesson
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
- Department of Experimental Medical Science; Lund University, BMC C12; SE-221 84 Lund Sweden
| | - Jonas Ståhle
- Department of Organic Chemistry; Arrhenius Laborator; Stockholm University SE-106 91 Stockholm Sweden
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246); Laboratoire de Chimie Organique 2; Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918 F-69622 Villeurbanne France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246); Laboratoire de Chimie Organique 2; Université Claude Bernard Lyon 1 and CNRS; 43 Boulevard du 11 Novembre 1918 F-69622 Villeurbanne France
| | - Magnus T. Johnson
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Göran Widmalm
- Department of Organic Chemistry; Arrhenius Laborator; Stockholm University SE-106 91 Stockholm Sweden
| | - Sophie Manner
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| | - Ulf Ellervik
- Center for Analysis and Synthesis, Center for Chemistry and Chemical Engineering; Lund University; P.O. Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
12
|
Dahbi S, Jacquinet JC, Bertin-Jung I, Robert A, Ramalanjaona N, Gulberti S, Fournel-Gigleux S, Lopin-Bon C. Synthesis of a library of variously modified 4-methylumbelliferyl xylosides and a structure-activity study of human β4GalT7. Org Biomol Chem 2017; 15:9653-9669. [PMID: 29116283 DOI: 10.1039/c7ob02530k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. The biosynthesis of PGs is complex and involves a large number of glycosyltranferases. Here we present a structure-activity study of human β4GalT7, which transfers the first Gal residue onto a xyloside moiety of the linkage region. An efficient and regiocontrolled synthesis of a library of modified analogs of 4-methylumbelliferyl xyloside (XylMU) is reported herein. Hydroxyl groups at the position C-2, C-3 or C-4 have been epimerized and/or replaced by a hydrogen or a fluorine, while the anomeric oxygen was replaced by either a sulfur or a sulfone. The effect of these compounds on human β4GalT7 activity in vitro and on GAG biosynthesis in cellulo was then evaluated.
Collapse
Affiliation(s)
- Samir Dahbi
- Univ. Orléans et CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chua JS, Kuberan B. Synthetic Xylosides: Probing the Glycosaminoglycan Biosynthetic Machinery for Biomedical Applications. Acc Chem Res 2017; 50:2693-2705. [PMID: 29058876 DOI: 10.1021/acs.accounts.7b00289] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosaminoglycans (GAGs) are polysaccharides ubiquitously found on cell surfaces and in the extracellular matrix (ECM). They regulate numerous cellular signaling events involved in many developmental and pathophysiological processes. GAGs are composed of complex sequences of repeating disaccharide units, each of which can carry many different modifications. The tremendous structural variations account for their ability to bind many proteins and thus, for their numerous functions. Although the sequence of GAG biosynthetic events and the enzymes involved mostly were deduced a decade ago, the emergence of tissue or cell specific GAGs from a nontemplate driven process remains an enigma. Current knowledge favors the hypothesis that macromolecular assemblies of GAG biosynthetic enzymes termed "GAGOSOMEs" coordinate polymerization and fine structural modifications in the Golgi apparatus. Distinct GAG structures arise from the differential channeling of substrates through the Golgi apparatus to various GAGOSOMEs. As GAGs perform multiple regulatory roles, it is of great interest to develop molecular strategies to selectively interfere with GAG biosynthesis for therapeutic applications. In this Account, we assess our present knowledge on GAG biosynthesis, the manipulation of GAG biosynthesis using synthetic xylosides, and the unrealized potential of these xylosides in various biomedical applications. Synthetic xylosides are small molecules consisting of a xylose attached to an aglycone group, and they compete with endogenous proteins for precursors and biosynthetic enzymes to assemble GAGs. This competition reduces endogenous proteoglycan-bound GAGs while increasing xyloside-bound free GAGs, mostly chondroitin sulfate (CS) and less heparan sulfate (HS), resulting in a variety of biological consequences. To date, hundreds of xylosides have been published and the importance of the aglycone group in determining the structure of the primed GAG chains is well established. However, the structure-activity relationship has long been cryptic. Nonetheless, xylosides have been designed to increase HS priming, modified to inhibit endogenous GAG production without priming, and engineered to be more biologically relevant. Synthetic xylosides hold great promise in many biomedical applications and as therapeutics. They are small, orally bioavailable, easily excreted, and utilize the host cell biosynthetic machinery to assemble GAGs that are likely nonimmunogenic. Various xylosides have been shown, in different biological systems, to have anticoagulant effects, selectively kill tumor cells, abrogate angiogenic and metastatic pathways, promote angiogenesis and neuronal growth, and affect embryonic development. However, most of these studies utilized the commercially available one or two β-D-xylosides and focused on the impact of endogenous proteoglycan-bound GAG inhibition on biological activity. Nevertheless, the manipulation of cell behavior as a result of stabilizing growth factor signaling with xyloside-primed GAGs is also reckonable but underexplored. Recent advances in the use of molecular modeling and docking simulations to understand the structure-activity relationships of xylosides have opened up the possibility of a more rational aglycone design to achieve a desirable biological outcome through selective priming and inhibitory activities. We envision these advances will encourage more researchers to explore these fascinating xylosides, harness the GAG biosynthetic machinery for a wider range of biomedical applications, and accelerate the successful transition of xyloside-based therapeutics from bench to bedside.
Collapse
Affiliation(s)
- Jie Shi Chua
- Department
of Bioengineering, ‡Department of Medicinal Chemistry, §Department of Biology, and ∥Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, United States
| | - Balagurunathan Kuberan
- Department
of Bioengineering, ‡Department of Medicinal Chemistry, §Department of Biology, and ∥Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Ruthenium(II)- and copper(I)-catalyzed synthesis of click-xylosides and assessment of their glycosaminoglycan priming activity. Bioorg Med Chem Lett 2017; 27:5027-5030. [DOI: 10.1016/j.bmcl.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 11/20/2022]
|
15
|
Chatron-Colliet A, Brusa C, Bertin-Jung I, Gulberti S, Ramalanjaona N, Fournel-Gigleux S, Brézillon S, Muzard M, Plantier-Royon R, Rémond C, Wegrowski Y. 'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides. Chem Biol Drug Des 2017; 89:319-326. [PMID: 27618481 DOI: 10.1111/cbdd.12865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/27/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis.
Collapse
Affiliation(s)
- Aurore Chatron-Colliet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Charlotte Brusa
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Isabelle Bertin-Jung
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sandrine Gulberti
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Nick Ramalanjaona
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Sylvie Fournel-Gigleux
- MolCelTEG Team and Glyco-Fluo platform (UMR 7365 and FR3209) Biopôle - Faculté de Médecine, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| | - Murielle Muzard
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims Cedex 2, France
| | - Caroline Rémond
- UMR614 Fractionnement des AgroRessources et Environnement, Université de Reims Champagne-Ardenne, Reims Cedex, France
- UMR614 Fractionnement des AgroRessources et Environnement, INRA, Reims Cedex, France
| | - Yanusz Wegrowski
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, UFR de Médecine, Université de Reims Champagne Ardenne, Reims Cedex, France
| |
Collapse
|
16
|
BODIPY-Conjugated Xyloside Primes Fluorescent Glycosaminoglycans in the Inner Ear of Opsanus tau. J Assoc Res Otolaryngol 2016; 17:525-540. [PMID: 27619213 DOI: 10.1007/s10162-016-0585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022] Open
Abstract
We report on a new xyloside conjugated to BODIPY, BX and its utility to prime fluorescent glycosaminoglycans (BX-GAGs) within the inner ear in vivo. When BX is administered directly into the endolymphatic space of the oyster toadfish (Opsanus tau) inner ear, fluorescent BX-GAGs are primed and become visible in the sensory epithelia of the semicircular canals, utricle, and saccule. Confocal and 2-photon microscopy of vestibular organs fixed 4 h following BX treatment, reveal BX-GAGs constituting glycocalyces that envelop hair cell kinocilium, nerve fibers, and capillaries. In the presence of GAG-specific enzymes, the BX-GAG signals are diminished, suggesting that chondroitin sulfates are the primary GAGs primed by BX. Results are consistent with similar click-xylosides in CHO cell lines, where the xyloside enters the Golgi and preferentially initiates chondroitin sulfate B production. Introduction of BX produces a temporary block of hair cell mechanoelectrical transduction (MET) currents in the crista, reduction in background discharge rate of afferent neurons, and a reduction in sensitivity to physiological stimulation. A six-degree-of-freedom pharmacokinetic mathematical model has been applied to interpret the time course and spatial distribution of BX and BX-GAGs. Results demonstrate a new optical approach to study GAG biology in the inner ear, for tracking synthesis and localization in real time.
Collapse
|
17
|
Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts. PLoS One 2016; 11:e0146499. [PMID: 26751072 PMCID: PMC4709117 DOI: 10.1371/journal.pone.0146499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022] Open
Abstract
Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis.
Collapse
|
18
|
Brusa C, Muzard M, Rémond C, Plantier-Royon R. β-Xylopyranosides: synthesis and applications. RSC Adv 2015. [DOI: 10.1039/c5ra14023d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent years, β-xylopyranosides have attracted interest due to the development of biomass-derived molecules. This review focuses on general routes for the preparation of β-xylopyranosides by chemical and enzymatic pathways and their main uses.
Collapse
Affiliation(s)
- Charlotte Brusa
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Murielle Muzard
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| | - Caroline Rémond
- Université de Reims Champagne-Ardenne
- UMR 614
- Fractionnement des AgroRessources et Environnement
- France
- INRA
| | - Richard Plantier-Royon
- Université de Reims Champagne-Ardenne
- Institut de Chimie Moléculaire de Reims (ICMR)
- CNRS UMR 7312
- UFR Sciences Exactes et Naturelles
- F-51687 Reims Cedex 2
| |
Collapse
|