1
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
2
|
Abstract
Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Vansuch GE, Wu CH, Haja DK, Blair SA, Chica B, Johnson MK, Adams MWW, Dyer RB. Metal-ligand cooperativity in the soluble hydrogenase-1 from Pyrococcus furiosus. Chem Sci 2020; 11:8572-8581. [PMID: 34123117 PMCID: PMC8163435 DOI: 10.1039/d0sc00628a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metal–ligand cooperativity is an essential feature of bioinorganic catalysis. The design principles of such cooperativity in metalloenzymes are underexplored, but are critical to understand for developing efficient catalysts designed with earth abundant metals for small molecule activation. The simple substrate requirements of reversible proton reduction by the [NiFe]-hydrogenases make them a model bioinorganic system. A highly conserved arginine residue (R355) directly above the exogenous ligand binding position of the [NiFe]-catalytic core is known to be essential for optimal function because mutation to a lysine results in lower catalytic rates. To expand on our studies of soluble hydrogenase-1 from Pyrococcus furiosus (Pf SH1), we investigated the role of R355 by site-directed-mutagenesis to a lysine (R355K) using infrared and electron paramagnetic resonance spectroscopic probes sensitive to active site redox and protonation events. It was found the mutation resulted in an altered ligand binding environment at the [NiFe] centre. A key observation was destabilization of the Nia3+–C state, which contains a bridging hydride. Instead, the tautomeric Nia+–L states were observed. Overall, the results provided insight into complex metal–ligand cooperativity between the active site and protein scaffold that modulates the bridging hydride stability and the proton inventory, which should prove valuable to design principles for efficient bioinspired catalysts. Metal–ligand cooperativity is an essential feature of bioinorganic catalysis.![]()
Collapse
Affiliation(s)
| | - Chang-Hao Wu
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,AskGene Pharma Inc. Camarillo CA 93012 USA
| | - Dominik K Haja
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA
| | - Soshawn A Blair
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Bryant Chica
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA .,Biosciences Center, National Renewable Energy Laboratory Golden Colorado 80401 USA
| | - Michael K Johnson
- Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, University of Georgia Athens Georgia 30602 USA.,Department of Chemistry, University of Georgia Athens Georgia 30602 USA
| | - R Brian Dyer
- Department of Chemistry, Emory University Atlanta Georgia 30222 USA
| |
Collapse
|
4
|
Ilina Y, Lorent C, Katz S, Jeoung J, Shima S, Horch M, Zebger I, Dobbek H. X‐ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yulia Ilina
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| | - Christian Lorent
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Sagie Katz
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Jae‐Hun Jeoung
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| | - Seigo Shima
- Max-Planck-Institut für Terrestrische Mikrobiologie Karl-von-Frisch-Str. 10 35043 Marburg Germany
| | - Marius Horch
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
- Department of Chemistry and York Biomedical Research InstituteUniversity of York Heslington York YO10 5DD UK
| | - Ingo Zebger
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/BiochemieHumboldt-Universität zu Berlin Philippstraße 13 10115 Berlin Germany
| |
Collapse
|
5
|
Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S, Horch M, Zebger I, Dobbek H. X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. Angew Chem Int Ed Engl 2019; 58:18710-18714. [PMID: 31591784 PMCID: PMC6916344 DOI: 10.1002/anie.201908258] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Indexed: 11/23/2022]
Abstract
[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H2). However, structural determinants of efficient H2 binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational‐spectroscopic insights into the unexplored structure of the H2‐binding [NiFe] intermediate. Using an F420‐reducing [NiFe]‐hydrogenase from Methanosarcina barkeri as a model enzyme, we show that the protein backbone provides a strained chelating scaffold that tunes the [NiFe] active site for efficient H2 binding and conversion. The protein matrix also directs H2 diffusion to the [NiFe] site via two gas channels and allows the distribution of electrons between functional protomers through a subunit‐bridging FeS cluster. Our findings emphasize the relevance of an atypical Ni coordination, thereby providing a blueprint for the design of bio‐inspired H2‐conversion catalysts.
Collapse
Affiliation(s)
- Yulia Ilina
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jae-Hun Jeoung
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Seigo Shima
- Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Marius Horch
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.,Department of Chemistry and York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| |
Collapse
|
6
|
Albareda M, Pacios LF, Palacios JM. Computational analyses, molecular dynamics, and mutagenesis studies of unprocessed form of [NiFe] hydrogenase reveal the role of disorder for efficient enzyme maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:325-340. [PMID: 30703364 DOI: 10.1016/j.bbabio.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 01/25/2019] [Indexed: 12/29/2022]
Abstract
Biological production and oxidation of hydrogen is mediated by hydrogenases, key enzymes for these energy-relevant reactions. Synthesis of [NiFe] hydrogenases involves a complex series of biochemical reactions to assemble protein subunits and metallic cofactors required for enzyme function. A final step in this biosynthetic pathway is the processing of a C-terminal tail (CTT) from its large subunit, thus allowing proper insertion of nickel in the unique NiFe(CN)2CO cofactor present in these enzymes. In silico modelling and Molecular Dynamics (MD) analyses of processed vs. unprocessed forms of Rhizobium leguminosarum bv. viciae (Rlv) hydrogenase large subunit HupL showed that its CTT (residues 582-596) is an intrinsically disordered region (IDR) that likely provides the required flexibility to the protein for the final steps of proteolytic maturation. Prediction of pKa values of ionizable side chains in both forms of the enzyme's large subunit also revealed that the presence of the CTT strongly modify the protonation state of some key residues around the active site. Furthermore, MD simulations and mutant analyses revealed that two glutamate residues (E27 in the N-terminal region and E589 inside the CTT) likely contribute to the process of nickel incorporation into the enzyme. Computational analysis also revealed structural details on the interaction of Rlv hydrogenase LSU with the endoprotease HupD responsible for the removal of CTT.
Collapse
Affiliation(s)
- Marta Albareda
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jose M Palacios
- Centro de Biotecnología y Genómica de Plantas (C.B.G.P.) UPM-INIA, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O2-Tolerant [NiFe]-Hydrogenase. J Am Chem Soc 2018; 140:10208-10220. [DOI: 10.1021/jacs.8b04798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rhiannon M. Evans
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen E. Beaton
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Emily J. Brooke
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Fraser A. Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
8
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part II. [4Fe-4S] and [3Fe-4S] iron-sulfur proteins. J Struct Biol 2018; 202:250-263. [DOI: 10.1016/j.jsb.2018.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 01/27/2023]
|
9
|
Shiraiwa S, So K, Sugimoto Y, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Kano K. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 2018; 123:156-161. [PMID: 29753939 DOI: 10.1016/j.bioelechem.2018.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Standard [NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF-H2ase) catalyzes the uptake and production of hydrogen (H2) and is a promising biocatalyst for future energy devices. However, DvMF-H2ase experiences oxidative inactivation under oxidative stress to generate Ni-A and Ni-B states. It takes a long time to reactivate the Ni-A state by chemical reduction, whereas the Ni-B state is quickly reactivated under reducing conditions. Oxidative inhibition limits the application of DvMF-H2ase in practical devices. In this research, we constructed a mediated-electron-transfer system by co-immobilizing DvMF-H2ase and a viologen redox polymer (VP) on electrodes. The system can avoid oxidative inactivation into the Ni-B state at high electrode potentials and rapidly reactivate the Ni-A state by electrochemical reduction of VP. H2 oxidation and H+ reduction were realized by adjusting the pH from a thermodynamic viewpoint. Using carbon felt as a working-electrode material, high current densities-up to (200 ± 70) and -(100 ± 9) mA cm-3 for the H2-oxidation and H+-reduction reactions, respectively-were attained.
Collapse
Affiliation(s)
- Saeko Shiraiwa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Keisei So
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yu Sugimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Koji Nishikawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
10
|
Artz JH, Zadvornyy OA, Mulder DW, King PW, Peters JW. Structural Characterization of Poised States in the Oxygen Sensitive Hydrogenases and Nitrogenases. Methods Enzymol 2017; 595:213-259. [PMID: 28882202 DOI: 10.1016/bs.mie.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystallization of FeS cluster-containing proteins has been challenging due to their oxygen sensitivity, and yet these enzymes are involved in many critical catalytic reactions. The last few years have seen a wealth of innovative experiments designed to elucidate not just structural but mechanistic insights into FeS cluster enzymes. Here, we focus on the crystallization of hydrogenases, which catalyze the reversible reduction of protons to hydrogen, and nitrogenases, which reduce dinitrogen to ammonia. A specific focus is given to the different experimental parameters and strategies that are used to trap distinct enzyme states, specifically, oxidants, reductants, and gas treatments. Other themes presented here include the recent use of Cryo-EM, and how coupling various spectroscopies to crystallization is opening up new approaches for structural and mechanistic analysis.
Collapse
Affiliation(s)
- Jacob H Artz
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Paul W King
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.
| |
Collapse
|
11
|
Ash PA, Hidalgo R, Vincent KA. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy. ACS Catal 2017; 7:2471-2485. [PMID: 28413691 PMCID: PMC5387674 DOI: 10.1021/acscatal.6b03182] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Indexed: 12/11/2022]
Abstract
![]()
Catalysis
of H2 production and oxidation reactions is
critical in renewable energy systems based around H2 as
a clean fuel, but the present reliance on platinum-based catalysts
is not sustainable. In nature, H2 is oxidized at minimal
overpotential and high turnover frequencies at [NiFe] catalytic sites
in hydrogenase enzymes. Although an outline mechanism has been established
for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton
and electron away from the active site, details remain vague concerning
how the proton transfers are facilitated by the protein environment
close to the active site. Furthermore, although [NiFe] hydrogenases
from different organisms or cellular environments share a common active
site, they exhibit a broad range of catalytic characteristics indicating
the importance of subtle changes in the surrounding protein in controlling
their behavior. Here we review recent time-resolved infrared (IR)
spectroscopic studies and IR spectroelectrochemical studies carried
out in situ during electrocatalytic turnover. Additionally, we re-evaluate
the significant body of IR spectroscopic data on hydrogenase active
site states determined through more conventional solution studies,
in order to highlight mechanistic steps that seem to apply generally
across the [NiFe] hydrogenases, as well as steps which so far seem
limited to specific groups of these enzymes. This analysis is intended
to help focus attention on the key open questions where further work
is needed to assess important aspects of proton and electron transfer
in the mechanism of [NiFe] hydrogenases.
Collapse
Affiliation(s)
- Philip A. Ash
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ricardo Hidalgo
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department
of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
12
|
Abstract
Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH.
Collapse
|
13
|
Greene BL, Vansuch GE, Wu CH, Adams MWW, Dyer RB. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. J Am Chem Soc 2016; 138:13013-13021. [DOI: 10.1021/jacs.6b07789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Ogata H, Lubitz W, Higuchi Y. Structure and function of [NiFe] hydrogenases. J Biochem 2016; 160:251-258. [PMID: 27493211 DOI: 10.1093/jb/mvw048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons via a heterolytic splitting mechanism. The active sites of [NiFe] hydrogenases comprise a dinuclear Ni-Fe center carrying CO and CN- ligands. The catalytic activity of the standard (O2-sensitive) [NiFe] hydrogenases vanishes under aerobic conditions. The O2-tolerant [NiFe] hydrogenases can sustain H2 oxidation activity under atmospheric conditions. These hydrogenases have very similar active site structures that change the ligand sphere during the activation/catalytic process. An important structural difference between these hydrogenases has been found for the proximal iron-sulphur cluster located in the vicinity of the active site. This unprecedented [4Fe-3S]-6Cys cluster can supply two electrons, which lead to rapid recovery of the O2 inactivation, to the [NiFe] active site.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan .,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Perotto CU, Marshall G, Jones GJ, Stephen Davies E, Lewis W, McMaster J, Schröder M. A Ni(i)Fe(ii) analogue of the Ni-L state of the active site of the [NiFe] hydrogenases. Chem Commun (Camb) 2015; 51:16988-91. [DOI: 10.1039/c5cc05881c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
[Ni(L1)Fe(tBuNC)4]+ is an unprecedented Ni(i)Fe(ii) species that reproduces the electronic configuration of the Ni-L state of the [NiFe] hydrogenases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Schröder
- The University of Nottingham
- Nottingham
- UK
- The University of Manchester
- Manchester
| |
Collapse
|