1
|
Masquelier E, Taxon E, Liang SP, Al Sabeh Y, Sepunaru L, Gordon MJ, Morse DE. A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly. J Biol Chem 2023; 299:103011. [PMID: 36781124 PMCID: PMC10024187 DOI: 10.1016/j.jbc.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.
Collapse
Affiliation(s)
- Eloise Masquelier
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Materials Department, University of California, Santa Barbara, California, USA
| | - Esther Taxon
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Sheng-Ping Liang
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Yahya Al Sabeh
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Michael J Gordon
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Daniel E Morse
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
2
|
de Sousa NF, Scotti L, de Moura ÉP, dos Santos Maia M, Soares Rodrigues GC, de Medeiros HIR, Lopes SM, Scotti MT. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. Curr Neuropharmacol 2022; 20:857-885. [PMID: 34636299 PMCID: PMC9881095 DOI: 10.2174/1570159x19666211005145952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil;,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil,Address correspondence to this author at the Health Sciences Center, Chemioinformatic Laboratory, Federal University of Paraíba, Paraíba, Brazil; E-mail:
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mayara dos Santos Maia
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Simone Mendes Lopes
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
4
|
Isopi E, 1 Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy;, Legname G. Pin1 and neurodegeneration: a new player for prion disorders? AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|