1
|
Borza R, Matas-Rico E, Perrakis A, Moolenaar WH. Unlocking the signaling potential of GPI-anchored proteins through lipolytic cleavage. Trends Cell Biol 2025:S0962-8924(24)00278-2. [PMID: 39848861 DOI: 10.1016/j.tcb.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) regulate numerous biological processes through interaction with signaling effectors at the cell surface. As a unique feature, GPI-APs can be released from their anchors by multi-pass GPI-specific phospholipases (types A2, C, and D) to impact signaling networks, phenotype, and cell fate; however, many questions remain outstanding. Here, we discuss and expand our current understanding of the distinct GPI-specific phospholipases, their substrates, effector pathways, and emerging physiological roles, with a focus on the six-transmembrane ecto-phospholipases GDE2 (GDPD5) and GDE3 (GDPD2). We provide structural insight into their AlphaFold-predicted inner workings, revealing how transmembrane (TM) domain plasticity may enable GPI-anchor binding and hydrolysis. Understanding lipolytic cleavage of GPI-APs adds a new dimension to their signaling capabilities and biological functions.
Collapse
Affiliation(s)
- Razvan Borza
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Matas-Rico
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain; IBIMA Plataforma BIONAND, Málaga, Spain
| | - Anastassis Perrakis
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Stefanova V, Ngai M, Weckman AM, Wright JK, Zhong K, Richard-Greenblatt M, McDonald CR, Conroy AL, Namasopo S, Opoka RO, Hawkes M, Kain KC. Soluble Urokinase-Type Plasminogen Activator Receptor as a Prognostic Marker of Ugandan Children at Risk of Severe and Fatal Malaria. Clin Infect Dis 2023; 76:e1079-e1086. [PMID: 35675322 DOI: 10.1093/cid/ciac457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Current malaria diagnostic tests do not reliably identify children at risk of severe and fatal infection. Host immune and endothelial activation contribute to malaria pathogenesis. Soluble urokinase-type plasminogen activator receptor (suPAR) is a marker of these pathways. We hypothesized that measuring suPAR at presentation could risk-stratify children with malaria. METHODS Plasma suPAR levels were determined in consecutive febrile children with malaria at presentation to hospital in Jinja, Uganda. We evaluated the accuracy of suPAR in predicting in-hospital mortality, and whether suPAR could improve a validated clinical scoring system (Lambaréné Organ Dysfunction Score [LODS]). RESULTS Of the 1226 children with malaria, 39 (3.2%) died. suPAR concentrations at presentation were significantly higher in children who went on to die than in those who survived (P < .0001). suPAR levels were associated with disease severity (LODS: 0 vs 1, P = .001; 1 vs 2, P < .001; 2 vs 3, 0 vs 2, 1 vs 3, and 0 vs 3, P < .0001). suPAR concentrations were excellent predictors of in-hospital mortality (area under the receiver operating characteristic curve [AUROC], 0.92 [95% confidence interval {CI}, .91-.94]). The prognostic accuracy of LODS (AUROC, 0.93 [95% CI, .91-.94]) was improved when suPAR was added (AUROC, 0.97 [95% CI, .96-.98]; P < .0001). CONCLUSIONS Measuring suPAR at presentation can identify children at risk of severe and fatal malaria. Adding suPAR to clinical scores could improve the recognition and triage of children at risk of death. suPAR can be detected with a point-of-care test and can now be evaluated in prospective trials.
Collapse
Affiliation(s)
- Veselina Stefanova
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M Weckman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Julie K Wright
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Zhong
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Ontario, Canada
| | - Melissa Richard-Greenblatt
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Public Health Ontario Laboratory, Toronto, Ontario, Canada
| | - Chloe R McDonald
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Sophie Namasopo
- Department of Pediatrics, Jinja Regional Referral Hospital, Jinja, Uganda
| | | | | | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,University Health Network-Toronto General Hospital, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
3
|
Gonias SL. Plasminogen activator receptor assemblies in cell signaling, innate immunity, and inflammation. Am J Physiol Cell Physiol 2021; 321:C721-C734. [PMID: 34406905 DOI: 10.1152/ajpcell.00269.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are serine proteases and major activators of fibrinolysis in mammalian systems. Because fibrinolysis is an essential component of the response to tissue injury, diverse cells, including cells that participate in the response to injury, have evolved receptor systems to detect tPA and uPA and initiate appropriate cell-signaling responses. Formation of functional receptor systems for the plasminogen activators requires assembly of diverse plasma membrane proteins, including but not limited to: the urokinase receptor (uPAR); integrins; N-formyl peptide receptor-2 (FPR2), receptor tyrosine kinases (RTKs), the N-methyl-d-aspartate receptor (NMDA-R), and low-density lipoprotein receptor-related protein-1 (LRP1). The cell-signaling responses elicited by tPA and uPA impact diverse aspects of cell physiology. This review describes rapidly evolving knowledge regarding the structure and function of plasminogen activator receptor assemblies. How these receptor assemblies regulate innate immunity and inflammation is then considered.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
4
|
Plasminogen Activators in Neurovascular and Neurodegenerative Disorders. Int J Mol Sci 2021; 22:ijms22094380. [PMID: 33922229 PMCID: PMC8122722 DOI: 10.3390/ijms22094380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells surrounded by a basement membrane, pericytes, astrocytes, microglia and neurons. A carefully coordinated interplay between these cellular and non-cellular components is required to maintain normal neuronal function, and in line with these observations, a growing body of evidence has linked NVU dysfunction to neurodegeneration. Plasminogen activators catalyze the conversion of the zymogen plasminogen into the two-chain protease plasmin, which in turn triggers a plethora of physiological events including wound healing, angiogenesis, cell migration and inflammation. The last four decades of research have revealed that the two mammalian plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), are pivotal regulators of NVU function during physiological and pathological conditions. Here, we will review the most relevant data on their expression and function in the NVU and their role in neurovascular and neurodegenerative disorders.
Collapse
|
5
|
Hatoum A, Mohammed R, Zakieh O. The unique invasiveness of glioblastoma and possible drug targets on extracellular matrix. Cancer Manag Res 2019; 11:1843-1855. [PMID: 30881112 PMCID: PMC6395056 DOI: 10.2147/cmar.s186142] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM), is described as one of the most invasive cancer types. Although GBM is a rare disease, with a global incidence of <10 per 100,000 people, its prognosis is extremely poor. Patient survival without treatment is ~6 months, which can be extended to around 15 months with the standard treatment protocol. Given the propensity of GBM cells to show widespread local invasion, beyond the margins seen through the best current imaging techniques, tumor margins cannot be clearly defined. Recurrence is inevitable, as the highly invasive nature of GBM means complete surgical resection of the tumor is near impossible without extensive damage to healthy surrounding brain tissue. Here, we outline GBM cell invasion in the unique environment of the brain extracellular matrix (ECM), as well as a deeper exploration of the specific mechanisms upregulated in GBMs to promote the characteristic highly invasive phenotype. Among these is the secretion of proteolytic enzymes for the destruction of the ECM, as well as discussion of a novel theory of amoeboid invasion, termed the “hydrodynamic mode of invasion”. The vast heterogeneity of GBM means that there are significant redundancies in invasive pathways, which pose challenges to the development of new treatments. In the past few decades, only one major advancement has been made in GBM treatment, namely the discovery of temozolomide. Future research should look to elucidate novel strategies for the specific targeting of the invasive cells of the tumor, to reduce recurrence rates and improve patient overall survival.
Collapse
Affiliation(s)
- Adam Hatoum
- School of Clinical Medicine, University of Cambridge, Cambridge, UK,
| | - Raihan Mohammed
- School of Clinical Medicine, University of Cambridge, Cambridge, UK,
| | - Omar Zakieh
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
6
|
The Urokinase Receptor Induces a Mesenchymal Gene Expression Signature in Glioblastoma Cells and Promotes Tumor Cell Survival in Neurospheres. Sci Rep 2018; 8:2982. [PMID: 29445239 PMCID: PMC5813209 DOI: 10.1038/s41598-018-21358-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
PLAUR encodes the urokinase receptor (uPAR), which promotes cell survival, migration, and resistance to targeted cancer therapeutics in glioblastoma cells in culture and in mouse model systems. Herein, we show that patient survival correlates inversely with PLAUR mRNA expression in gliomas of all grades, in glioblastomas, and in the subset of glioblastomas that demonstrate the mesenchymal gene expression signature. PLAUR clusters with genes that define the more aggressive mesenchymal subtype in transcriptome profiles of glioblastoma tissue and glioblastoma cells in neurospheres, which are enriched for multipotent cells with stem cell-like qualities. When PLAUR was over-expressed or silenced in glioblastoma cells, neurosphere growth and expression of mesenchymal subtype biomarkers correlated with uPAR abundance. uPAR also promoted glioblastoma cell survival in neurospheres. Constitutively-active EGF Receptor (EGFRvIII) promoted neurosphere growth; however, unlike uPAR, EGFRvIII did not induce the mesenchymal gene expression signature. Immunohistochemical analysis of human glioblastomas showed that uPAR is typically expressed by a small sub-population of the cancer cells; it is thus reasonable to conclude that this subpopulation of cells is responsible for the effects of PLAUR on patient survival. We propose that uPAR-expressing glioblastoma cells demonstrate a mesenchymal gene signature, an increased capacity for cell survival, and stem cell-like properties.
Collapse
|
7
|
Masui K, Kato Y, Sawada T, Mischel PS, Shibata N. Molecular and Genetic Determinants of Glioma Cell Invasion. Int J Mol Sci 2017; 18:E2609. [PMID: 29207533 PMCID: PMC5751212 DOI: 10.3390/ijms18122609] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022] Open
Abstract
A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, "diffuse glioma", which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Yoichiro Kato
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Tatsuo Sawada
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA.
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
8
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
9
|
Magnussen SN, Hadler-Olsen E, Costea DE, Berg E, Jacobsen CC, Mortensen B, Salo T, Martinez-Zubiaurre I, Winberg JO, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer 2017; 17:350. [PMID: 28526008 PMCID: PMC5438506 DOI: 10.1186/s12885-017-3349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Collapse
Affiliation(s)
- Synnove Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Cristiane Cavalcanti Jacobsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bente Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Tuula Salo
- Cancer and Translational Research Medicine Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Helsinki, Helsinki, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjorg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
10
|
Rossmeisl JH, Hall-Manning K, Robertson JL, King JN, Davalos RV, Debinski W, Elankumaran S. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors. Onco Targets Ther 2017; 10:2077-2085. [PMID: 28442916 PMCID: PMC5396930 DOI: 10.2147/ott.s132964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The expression of the urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-anchored protein family member, and the activity of its ligand, urokinase-type plasminogen activator (uPA), have been associated with the invasive and metastatic potentials of a variety of human brain tumors through their regulation of extracellular matrix degradation. Domesticated dogs develop naturally occurring brain tumors that share many clinical, phenotypic, molecular, and genetic features with their human counterparts, which has prompted the use of the dogs with spontaneous brain tumors as models to expedite the translation of novel brain tumor therapeutics to humans. There is currently little known regarding the role of the uPA system in canine brain tumorigenesis. The objective of this study was to characterize the expression of uPAR and the activity of uPA in canine brain tumors as justification for the development of uPAR-targeted brain tumor therapeutics in dogs. Methods We investigated the expression of uPAR in 37 primary canine brain tumors using immunohistochemistry, Western blotting, real-time quantitative polymerase chain reaction analyses, and by the assay of the activity of uPA using casein–plasminogen zymography. Results Expression of uPAR was observed in multiple tumoral microenvironmental niches, including neoplastic cells, stroma, and the vasculature of canine brain tumors. Relative to normal brain tissues, uPAR protein and mRNA expression were significantly greater in canine meningiomas, gliomas, and choroid plexus tumors. Increased activity of uPA was documented in all tumor types. Conclusions uPAR is overexpressed and uPA activity increased in canine meningiomas, gliomas, and choroid plexus tumors. This study illustrates the potential of uPAR/uPA molecularly targeted approaches for canine brain tumor therapeutics and reinforces the translational significance of canines with spontaneous brain tumors as models for human disease.
Collapse
Affiliation(s)
- John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory.,Department of Small Animal Clinical Sciences.,The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| | - Kelli Hall-Manning
- Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine
| | - John L Robertson
- Veterinary and Comparative Neuro-Oncology Laboratory.,The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC.,Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech
| | - Jamie N King
- Veterinary and Comparative Neuro-Oncology Laboratory.,Department of Small Animal Clinical Sciences
| | - Rafael V Davalos
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC.,Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech
| | - Waldemar Debinski
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| | - Subbiah Elankumaran
- The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
11
|
Portelli MA, Moseley C, Stewart CE, Postma DS, Howarth P, Warner JA, Holloway JW, Koppelman GH, Brightling C, Sayers I. Airway and peripheral urokinase plasminogen activator receptor is elevated in asthma, and identifies a severe, nonatopic subset of patients. Allergy 2017; 72:473-482. [PMID: 27624865 DOI: 10.1111/all.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 02/03/2023]
Abstract
RATIONALE Genetic polymorphisms in the asthma susceptibility gene, urokinase plasminogen activator receptor (uPAR/PLAUR) have been associated with lung function decline and uPAR blood levels in asthma subjects. Preliminary studies have identified uPAR elevation in asthma; however, a definitive study regarding which clinical features of asthma uPAR may be driving is currently lacking. OBJECTIVES We aimed to comprehensively determine the uPAR expression profile in asthma and control subjects utilizing bronchial biopsies and serum, and to relate uPAR expression to asthma clinical features. METHODS uPAR levels were determined in control (n = 9) and asthmatic (n = 27) bronchial biopsies using immunohistochemistry, with a semi-quantitative score defining intensity in multiple cell types. Soluble-cleaved (sc) uPAR levels were determined in serum through ELISA in UK (cases n = 129; controls n = 39) and Dutch (cases n = 514; controls n = 96) cohorts. MEASUREMENTS AND MAIN RESULTS In bronchial tissue, uPAR was elevated in inflammatory cells in the lamina propria (P = 0.0019), bronchial epithelial (P = 0.0002) and airway smooth muscle cells (P = 0.0352) of patients with asthma, with uPAR levels correlated between the cell types. No correlation with disease severity or asthma clinical features was identified. scuPAR serum levels were elevated in patients with asthma (1.5-fold; P = 0.0008), and we identified an association between high uPAR serum levels and severe, nonatopic disease. CONCLUSIONS This study provides novel data that elevated airway and blood uPAR is a feature of asthma and that blood uPAR is particularly related to severe, nonatopic asthma. The findings warrant further investigation and may provide a therapeutic opportunity for this refractory population.
Collapse
Affiliation(s)
- M. A. Portelli
- Division of Respiratory Medicine; Queen's Medical Centre; University of Nottingham; Nottingham UK
| | - C. Moseley
- Clinical & Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - C. E. Stewart
- Division of Respiratory Medicine; Queen's Medical Centre; University of Nottingham; Nottingham UK
| | - D. S. Postma
- Department of Pulmonology; Beatrix Children's Hospital; GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - P. Howarth
- Clinical & Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- NIHR Respiratory Biomedical Research Unit; Faculty of Medicine; University of Southampton; Southampton UK
| | - J. A. Warner
- Clinical & Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - J. W. Holloway
- Clinical & Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Human Development & Health; Faculty of Medicine; University of Southampton; Southampton UK
| | - G. H. Koppelman
- Department of Paediatric Pulmonology and Paediatric Allergology; Beatrix Children's Hospital; GRIAC Research Institute; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
| | - C. Brightling
- Glenfield Hospital; University of Leicester; Leicester UK
| | - I. Sayers
- Division of Respiratory Medicine; Queen's Medical Centre; University of Nottingham; Nottingham UK
| |
Collapse
|
12
|
Merino P, Diaz A, Yepes M. Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) promote neurorepair in the ischemic brain. RECEPTORS & CLINICAL INVESTIGATION 2017; 4:e1552. [PMID: 28804736 PMCID: PMC5553903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Despite the fact that ischemic stroke has been considered a leading cause of mortality in the world, recent advances in our understanding of the pathophysiological mechanisms underlying the ischemic injury and the treatment of acute ischemic stroke patients have led to a sharp decrease in the number of stroke deaths. However, this decrease in stroke mortality has also led to an increase in the number of patients that survive the acute ischemic injury with different degrees of disability. Unfortunately, to this date we do not have an effective therapeutic strategy to promote neurological recovery in these growing population of stroke survivors. Cerebral ischemia not only causes the destruction of a large number of axons and synapses but also activates endogenous mechanisms that promote the recovery of those neurons that survive its harmful effects. Here we review experimental evidence indicating that one of these mechanisms of repair is the binding of the serine proteinase urokinase-type plasminogen activator (uPA) to its receptor (uPAR) in the growth cones of injured axons. Indeed, the binding of uPA to uPAR in the periphery of growth cones of injured axons induces the recruitment of β1-integrin to the plasma membrane, β1-integrin-mediated activation of the small Rho GTPase Rac1, and Rac1-induced axonal regeneration. Furthermore, we found that this process is modulated by the low density lipoprotein receptor-related protein (LRP1). The data reviewed here indicate that the uPA-uPAR-LRP1 system is a potential target for the development of therapeutic strategies to promote neurological recovery in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Paola Merino
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA,Division of Neurosciences, Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA
| | - Ariel Diaz
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA,Division of Neurosciences, Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA
| | - Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322, USA,Division of Neurosciences, Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA,Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033, USA
| |
Collapse
|
13
|
Jones KA, Gilder AS, Lam MS, Du N, Banki MA, Merati A, Pizzo DP, VandenBerg SR, Gonias SL. Selective coexpression of VEGF receptor 2 in EGFRvIII-positive glioblastoma cells prevents cellular senescence and contributes to their aggressive nature. Neuro Oncol 2015; 18:667-78. [PMID: 26420897 DOI: 10.1093/neuonc/nov243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In glioblastoma (GBM), the gene for epidermal growth factor receptor (EGFR) is frequently amplified. EGFR mutations also are common, including a truncation mutation that yields a constitutively active variant called EGFR variant (v)III. EGFRvIII-positive GBM progresses rapidly; however, the reason for this is not clear because the activity of EGFRvIII is attenuated compared with EGF-ligated wild-type EGFR. We hypothesized that EGFRvIII-expressing GBM cells selectively express other oncogenic receptors that support tumor progression. METHODS Mining of The Cancer Genome Atlas prompted us to test whether GBM cells in culture, which express EGFRvIII, selectively express vascular endothelial growth factor receptor (VEGFR)2. We also studied human GBM propagated as xenografts. We then applied multiple approaches to test the effects of VEGFR2 on GBM cell growth, apoptosis, and cellular senescence. RESULTS In human GBM, EGFR overexpression and EGFRvIII positivity were associated with increased VEGFR2 expression. In GBM cells in culture, EGFRvIII-initiated cell signaling increased expression of VEGFR2, which prevented cellular senescence and promoted cell cycle progression. The VEGFR-selective tyrosine kinase inhibitor cediranib decreased tumor DNA synthesis, increased staining for senescence-associated β-galactosidase, reduced retinoblastoma phosphorylation, and increased p27(Kip1), all markers of cellular senescence. Similar results were obtained when VEGFR2 was silenced. CONCLUSIONS VEGFR2 expression by GBM cells supports cell cycle progression and prevents cellular senescence. Coexpression of VEGFR2 by GBM cells in which EGFR signaling is activated may contribute to the aggressive nature of these cells.
Collapse
Affiliation(s)
- Karra A Jones
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Andrew S Gilder
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Michael S Lam
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Na Du
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Aran Merati
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Donald P Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Scott R VandenBerg
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California (all authors)
| |
Collapse
|
14
|
Gonias SL, Hu J. Urokinase receptor and resistance to targeted anticancer agents. Front Pharmacol 2015; 6:154. [PMID: 26283964 PMCID: PMC4515545 DOI: 10.3389/fphar.2015.00154] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The urokinase receptor (uPAR) is a GPI-anchored membrane protein, which regulates protease activity at the cell surface and, in collaboration with a system of co-receptors, triggers cell-signaling and regulates gene expression within the cell. In normal tissues, uPAR gene expression is limited; however, in cancer, uPAR is frequently over-expressed and the gene may be amplified. Hypoxia, which often develops in tumors, further increases uPAR expression by cancer cells. uPAR-initiated cell-signaling promotes cancer cell migration, invasion, metastasis, epithelial-mesenchymal transition, stem cell-like properties, survival, and release from states of dormancy. Newly emerging data suggest that the pro-survival cell-signaling activity of uPAR may allow cancer cells to "escape" from the cytotoxic effects of targeted anticancer drugs. Herein, we review the molecular properties of uPAR that are responsible for its activity in cancer cells and its ability to counteract the activity of anticancer drugs.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| | - Jingjing Hu
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| |
Collapse
|