1
|
Castanheira S, Torronteras S, Cestero JJ, García-del Portillo F. Morphogenetic penicillin-binding proteins control virulence-associated type III secretion systems in Salmonella. Infect Immun 2025; 93:e0055524. [PMID: 39745378 PMCID: PMC11834469 DOI: 10.1128/iai.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 02/19/2025] Open
Abstract
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In Salmonella, incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus. Enigmatically, following invasion of host cell Salmonella enterica serovar Typhimurium modifies PG synthesis by upregulating two pathogen-specific enzymes, the penicillin-binding proteins PBP2SAL and PBP3SAL, with roles in cell elongation and division, respectively. In the mouse typhoid model, the amount of PBP2SAL and PBP3SAL produced by the pathogen exceeds by large those of the canonical enzymes PBP2 and PBP3. This change responds to acidity and high osmolarity, the same cues that intra-phagosomal S. Typhimurium perceives to switch the SPI-1 T3SS by that encoded in SPI-2. Using isogenic mutants lacking each of the four morphogenetic PBPs, we tested whether their activities and those of the T3SS encoded by SPI-1 and SPI-2, are interconnected. Our data show that PBP2 is required for proper function of SPI-1 T3SS but dispensable for motility, whereas the lack of any of the morphogenetic PBPs increases SPI-2 T3SS activity. The positive control exerted by PBP2 on SPI-1 takes place via the SPI-1-specific regulators HilA and InvF. To our knowledge, these findings provide the first evidence linking morphogenetic enzymes that synthesize PG with T3SS associated to virulence.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sara Torronteras
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Juan J. Cestero
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Ramírez Carbó CA, Faromiki OG, Nan B. A lytic transglycosylase connects bacterial focal adhesion complexes to the peptidoglycan cell wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588103. [PMID: 38617213 PMCID: PMC11014575 DOI: 10.1101/2024.04.04.588103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The Gram-negative bacterium Myxococcus xanthus glides on solid surfaces. Dynamic bacterial focal adhesion complexes (bFACs) convert proton motive force from the inner membrane into mechanical propulsion on the cell surface. It is unclear how the mechanical force transmits across the rigid peptidoglycan (PG) cell wall. Here we show that AgmT, a highly abundant lytic PG transglycosylase homologous to Escherichia coli MltG, couples bFACs to PG. Coprecipitation assay and single-particle microscopy reveal that the gliding motors fail to connect to PG and thus are unable to assemble into bFACs in the absence of an active AgmT. Heterologous expression of E. coli MltG restores the connection between PG and bFACs and thus rescues gliding motility in the M. xanthus cells that lack AgmT. Our results indicate that bFACs anchor to AgmT-modified PG to transmit mechanical force across the PG cell wall.
Collapse
Affiliation(s)
- Carlos A. Ramírez Carbó
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- The Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Olalekan G. Faromiki
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- C. A. R. C. and O. G. F. contribute equally to this work
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Boorman J, Zeng X, Lin J, van den Akker F. Structural insights into peptidoglycan glycosidase EtgA binding to the inner rod protein EscI of the type III secretion system via a designed EscI-EtgA fusion protein. Protein Sci 2024; 33:e4930. [PMID: 38380768 PMCID: PMC10880428 DOI: 10.1002/pro.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Bacteria express lytic enzymes such as glycosidases, which have potentially self-destructive peptidoglycan (PG)-degrading activity and, therefore, require careful regulation in bacteria. The PG glycosidase EtgA is regulated by localization to the assembling type III secretion system (T3SS), generating a hole in the PG layer for the T3SS to reach the outer membrane. The EtgA localization was found to be mediated via EtgA interacting with the T3SS inner rod protein EscI. To gain structural insights into the EtgA recognition of EscI, we determined the 2.01 Å resolution structure of an EscI (51-87)-linker-EtgA fusion protein designed based on AlphaFold2 predictions. The structure revealed EscI residues 72-87 forming an α-helix interacting with the backside of EtgA, distant from the active site. EscI residues 56-71 also were found to interact with EtgA, with these residues stretching across the EtgA surface. The ability of the EscI to interact with EtgA was also probed using an EscI peptide. The EscI peptide comprising residues 66-87, slightly larger than the observed EscI α-helix, was shown to bind to EtgA using microscale thermophoresis and thermal shift differential scanning fluorimetry. The EscI peptide also had a two-fold activity-enhancing effect on EtgA, whereas the EscI-EtgA fusion protein enhanced activity over four-fold compared to EtgA. Our studies suggest that EtgA regulation by EscI could be trifold involving protein localization, protein activation, and protein stabilization components. Analysis of the sequence conservation of the EscI EtgA interface residues suggested a possible conservation of such regulation for related proteins from different bacteria.
Collapse
Affiliation(s)
- J. Boorman
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| | - X. Zeng
- Department of Animal ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | - J. Lin
- Department of Animal ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | - F. van den Akker
- Department of BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
4
|
Santin YG, Cascales E. Measure of Peptidoglycan Degradation Activity. Methods Mol Biol 2024; 2715:197-205. [PMID: 37930529 DOI: 10.1007/978-1-0716-3445-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Most bacterial secretion systems are large machines that cross the cell envelope to deliver effectors outside the cell or directly into target cells. The peptidoglycan layer can therefore represent a physical barrier for the assembly of these large machines. Secretion systems and their counterparts such as type IV pili, flagella, and conjugation machines have therefore evolved or hijacked enzymes with peptidoglycan degradation activity. These enzymes are usually glycoside hydrolases that cleave the glycan chains of the peptidoglycan. Their activities are spatially controlled to avoid cell lysis and to create local rearrangement of the cell wall. In addition, peptidoglycan hydrolases may not be only required for the proper assembly of the secretion systems but may directly participate to the release of the effectors. Finally, several antibacterial effectors possess peptidoglycan degradation activity that damage the cell wall once delivered in the target cell. Here, we describe protocols to test the peptidoglycan degradation activity of these proteins in vitro and in solution.
Collapse
Affiliation(s)
- Yoann G Santin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ, CNRS, Marseille, France.
| |
Collapse
|
5
|
Sirisaengtaksin N, O'Donoghue EJ, Jabbari S, Roe AJ, Krachler AM. Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells. mSphere 2023; 8:e0052023. [PMID: 37929984 PMCID: PMC10732017 DOI: 10.1128/msphere.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Bacteria can package protein cargo into nanosized membrane blebs that are shed from the bacterial membrane and released into the environment. Here, we report that a type of pathogenic bacteria called enterohemorrhagic Escherichia coli O157 (EHEC) uses their membrane blebs (outer membrane vesicles) to package components of their type 3 secretion system and send them into host cells, where they can manipulate host signaling pathways including those involved in infection response, such as immunity. Usually, EHEC use a needle-like apparatus to inject these components into host cells, but packaging them into membrane blebs that get taken up by host cells is another way of delivery that can bypass the need for a functioning injection system.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eloise J. O'Donoghue
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sara Jabbari
- School of Mathematics, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew J. Roe
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Worrall LJ, Majewski DD, Strynadka NCJ. Structural Insights into Type III Secretion Systems of the Bacterial Flagellum and Injectisome. Annu Rev Microbiol 2023; 77:669-698. [PMID: 37713458 DOI: 10.1146/annurev-micro-032521-025503] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| | - Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
- Current affiliation: Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| |
Collapse
|
7
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
8
|
Álvarez B, Muñoz-Abad V, Asensio-Calavia A, Fernández LÁ. Enhanced protein translocation to mammalian cells by expression of EtgA transglycosylase in a synthetic injector E. coli strain. Microb Cell Fact 2022; 21:133. [PMID: 35780105 PMCID: PMC9250224 DOI: 10.1186/s12934-022-01860-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Background Bacterial type III secretion systems (T3SSs) assemble a multiprotein complex termed the injectisome, which acts as a molecular syringe for translocation of specific effector proteins into the cytoplasm of host cells. The use of injectisomes for delivery of therapeutic proteins into mammalian cells is attractive for biomedical applications. With that aim, we previously generated a non-pathogenic Escherichia coli strain, called Synthetic Injector E. coli (SIEC), which assembles functional injectisomes from enteropathogenic E. coli (EPEC). The assembly of injectisomes in EPEC is assisted by the lytic transglycosylase EtgA, which degrades the peptidoglycan layer. As SIEC lacks EtgA, we investigated whether expression of this transglycosylase enhances the protein translocation capacity of the engineered bacterium. Results The etgA gene from EPEC was integrated into the SIEC chromosome under the control of the inducible tac promoter, generating the strain SIEC-eEtgA. The controlled expression of EtgA had no effect on the growth or viability of bacteria. Upon induction, injectisome assembly was ~ 30% greater in SIEC-eEtgA than in the parental strain, as determined by the level of T3SS translocon proteins, the hemolytic activity of the bacterial strain, and the impairment in flagellar motility. The functionality of SIEC-eEtgA injectisomes was evaluated in a derivative strain carrying a synthetic operon (eLEE5), which was capable of delivering Tir effector protein into the cytoplasm of HeLa cells triggering F-actin polymerization beneath the attached bacterium. Lastly, using β-lactamase as a reporter of T3SS-protein injection, we determined that the protein translocation capacity was ~ 65% higher in the SIEC-EtgA strain than in the parental SIEC strain. Conclusions We demonstrate that EtgA enhances the assembly of functional injectisomes in a synthetic injector E. coli strain, enabling the translocation of greater amounts of proteins into the cytoplasm of mammalian cells. Accordingly, EtgA expression may boost the protein translocation of SIEC strains programmed as living biotherapeutics.
Collapse
Affiliation(s)
- Beatriz Álvarez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus Cantoblanco, 28049, Madrid, Spain
| | - Víctor Muñoz-Abad
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus Cantoblanco, 28049, Madrid, Spain.,Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid (UAM), Campus Cantoblanco, 28049, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Nicolas Cabrera 1, Campus Cantoblanco, 28049, Madrid, Spain
| | - Alejandro Asensio-Calavia
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus Cantoblanco, 28049, Madrid, Spain.,Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid (UAM), Campus Cantoblanco, 28049, Madrid, Spain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Darwin 3, Campus Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Jenkins J, Worrall L, Strynadka N. Recent structural advances towards understanding of the bacterial type III secretion injectisome. Trends Biochem Sci 2022; 47:795-809. [DOI: 10.1016/j.tibs.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
|
10
|
Modulation of the enzymatic activity of the flagellar lytic transglycosylase SltF by rod components, and the scaffolding protein FlgJ in Rhodobacter sphaeroides. J Bacteriol 2021; 203:e0037221. [PMID: 34309398 DOI: 10.1128/jb.00372-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Macromolecular cell-envelope-spanning structures such as the bacterial flagellum must traverse the cell wall. Lytic transglycosylases enzymes are capable of enlarging gaps in the peptidoglycan meshwork to allow the efficient assembly of supramolecular complexes. In the periplasmic space, the assembly of the flagellar rod requires the scaffold protein FlgJ, which includes a muramidase domain in the canonical models Salmonella enterica and Escherichia coli. In contrast, in Rhodobacter sphaeroides, FlgJ and the dedicated flagellar lytic transglycosylase SltF are separate entities that interact in the periplasm. In this study we show that sltF is expressed along with the genes encoding the early components of the flagellar hierarchy that include the hook-basal body proteins, making SltF available during the rod assembly. Protein-protein interaction experiments demonstrated that SltF interacts with the rod proteins FliE, FlgB, FlgC, FlgF and FlgG through its C-terminal region. A deletion analysis that divides the C-terminus in two halves revealed that the interacting regions for most of the rod proteins are not redundant. Our results also show that the presence of the rod proteins FliE, FlgB, FlgC, and FlgF displace the previously reported SltF-FlgJ interaction. In addition, we observed modulation of the transglycosylase activity of SltF mediated by FlgB and FlgJ that could be relevant to coordinate rod assembly with cell wall remodeling. In summary, different mechanisms regulate the flagellar lytic transglycosylase, SltF ensuring a timely transcription, a proper localization and a controlled enzymatic activity. Importance Several mechanisms participate in the assembly of cell-envelope-spanning macromolecular structures. The sequential expression of substrates to be exported, selective export, and a specific order of incorporation are some of the mechanisms that stand out to drive an efficient assembly process. In this work we analyze how the structural rod proteins, the scaffold protein FlgJ and the flagellar lytic enzyme SltF, interact in an orderly fashion to assemble the flagellar rod into the periplasmic space. A complex arrangement of transient interactions directs a dedicated flagellar muramidase towards the flagellar rod. All these interactions bring this protein to the proximity of the peptidoglycan wall while also modulating its enzymatic activity. This study suggests how a dynamic network of interactions participates in controlling SltF, a prominent component for flagellar formation.
Collapse
|
11
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
12
|
T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nat Microbiol 2019; 4:2010-2019. [DOI: 10.1038/s41564-019-0545-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023]
|
13
|
Lyons BJE, Strynadka NCJ. On the road to structure-based development of anti-virulence therapeutics targeting the type III secretion system injectisome. MEDCHEMCOMM 2019; 10:1273-1289. [PMID: 31534650 PMCID: PMC6748289 DOI: 10.1039/c9md00146h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
The type III secretion system injectisome is a syringe-like multimembrane spanning nanomachine that is essential to the pathogenicity but not viability of many clinically relevant Gram-negative bacteria, such as enteropathogenic Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa. Due to the rise in antibiotic resistance, new strategies must be developed to treat the growing spectre of drug resistant infections. Targeting the injectisome via an 'anti-virulence strategy' is a promising avenue to pursue as an alternative to the more commonly used bactericidal therapeutics, which have a high propensity for resulting resistance development and often more broad killing profile, including unwanted side effects in eliminating favourable members of the microbiome. Building on more than a decade of crystallographic work of truncated or isolated forms of the more than two dozen components of the secretion apparatus, recent advances in the field of single-particle cryo-electron microscopy have allowed for the elucidation of atomic resolution structures for many of the type III secretion system components in their assembled, oligomerized state including the needle complex, export apparatus and ATPase. Cryo-electron tomography studies have also advanced our understanding of the direct pathogen-host interaction between the type III secretion system translocon and host cell membrane. These new structural works that further our understanding of the myriad of protein-protein interactions that promote injectisome function will be highlighted in this review, with a focus on those that yield promise for future anti-virulence drug discovery and design. Recently developed inhibitors, including both synthetic, natural product and peptide inhibitors, as well as promising new developments of immunotherapeutics will be discussed. As our understanding of this intricate molecular machinery advances, the development of anti-virulence inhibitors can be enhanced through structure-guided drug design.
Collapse
Affiliation(s)
- Bronwyn J E Lyons
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Center for Blood Research , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada .
| |
Collapse
|
14
|
Torres‐Vargas CE, Kronenberger T, Roos N, Dietsche T, Poso A, Wagner S. The inner rod of virulence‐associated type III secretion systems constitutes a needle adapter of one helical turn that is deeply integrated into the system's export apparatus. Mol Microbiol 2019; 112:918-931. [DOI: 10.1111/mmi.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Nora Roos
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Tobias Dietsche
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Antti Poso
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
- Partner‐Site Tübingen German Center for Infection Research (DZIF) Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| |
Collapse
|
15
|
Slater SL, Sågfors AM, Pollard DJ, Ruano-Gallego D, Frankel G. The Type III Secretion System of Pathogenic Escherichia coli. Curr Top Microbiol Immunol 2019; 416:51-72. [PMID: 30088147 DOI: 10.1007/82_2018_116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), enteroinvasive E. coli (EIEC) and Shigella relies on the elaboration of a type III secretion system (T3SS). Few strains also encode a second T3SS, named ETT2. Through the integration of coordinated intracellular and extracellular cues, the modular T3SS is assembled within the bacterial cell wall, as well as the plasma membrane of the host cell. As such, the T3SS serves as a conduit, allowing the chaperone-regulated translocation of effector proteins directly into the host cytosol to subvert eukaryotic cell processes. Recent technological advances revealed high structural resolution of the T3SS apparatus and how it could be exploited to treat enteric disease. This chapter summarises the current knowledge of the structure and function of the E. coli T3SSs.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Agnes M Sågfors
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Dominic J Pollard
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
16
|
Wang L, Yang LY, Gan YL, Yang F, Liang XL, Li WL, Bo-Le J. Two lytic transglycosylases of Xanthomonas campestris pv. campestris associated with cell separation and type III secretion system, respectively. FEMS Microbiol Lett 2019; 366:5449009. [PMID: 30977795 DOI: 10.1093/femsle/fnz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/09/2019] [Indexed: 01/13/2023] Open
Abstract
The lytic transglycosylases (LTs) are important enzymes that degrade peptidoglycan of the bacterial cell wall and affect many biological functions. We present here that XC_0706 and XC_3001 are annotated as the LTs in Xanthomonas campestris pv. campestris. XC_0706 is associated with virulence and plays a pivotal role in cell division. Mutation on XC_3001 reduced hypersensitive response induction and the translocation of type III effector, but did not affect the function of the type II secretion system. Further studies showed that multiple LTs genes contribute to efficiency of the type III secretory system in X. campestris pv. campestris.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.,College of Biotechnology, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin, Guangxi 541004, China
| | - Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yong-Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Feng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Xue-Lian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Wan-Lian Li
- College of Biotechnology, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin, Guangxi 541004, China
| | - Jiang Bo-Le
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
17
|
Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. Curr Top Microbiol Immunol 2019; 427:35-66. [PMID: 31218503 DOI: 10.1007/82_2019_164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.
| |
Collapse
|
18
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
19
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
20
|
EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope. J Bacteriol 2018; 200:JB.00268-18. [PMID: 30082459 DOI: 10.1128/jb.00268-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/31/2018] [Indexed: 11/20/2022] Open
Abstract
The ESAT-6-like secretion system (ESS) of Staphylococcus aureus is assembled in the bacterial membrane from core components that promote the secretion of WXG-like proteins (EsxA, EsxB, EsxC, and EsxD) and the EssD effector. Genes encoding the ESS secretion machinery components, effector, and WXG-like proteins are located in the ess locus. Here, we identify essH, a heretofore uncharacterized gene of the ess locus, whose product is secreted via an N-terminal signal peptide into the extracellular medium of staphylococcal cultures. EssH exhibits two peptidoglycan hydrolase activities, cleaving the pentaglycine cross bridge and the amide bond of N-acetylmuramyl-l-alanine, thereby separating glycan chains and wall peptides with cleaved cross bridges. Unlike other peptidoglycan hydrolases, EssH does not promote the lysis of staphylococci. EssH residues Cys199 and His254, which are conserved in other CHAP domain enzymes, are required for peptidoglycan hydrolase activity and for S. aureus ESS secretion. These data suggest that EssH and its murein hydrolase activity are required for protein secretion by the ESS pathway.IMPORTANCE Gene clusters encoding WXG-like proteins and FtsK/SpoIIIE-like P loop ATPases in Firmicutes encode type 7b secretion systems (T7bSS) for the transport of select protein substrates. The Staphylococcus aureus T7bSS assembles in the bacterial membrane and promotes the secretion of WXG-like proteins and effectors. The mechanisms whereby staphylococci extend the T7SS across the bacterial cell wall envelope are not known. Here, we show that staphylococci secrete EssH to cleave their peptidoglycan, thereby enabling T7bSS transport of proteins across the bacterial cell wall envelope.
Collapse
|
21
|
Abstract
Carboxy-terminal processing proteases (CTPs) occur in all three domains of life. In bacteria, some of them have been associated with virulence. However, the precise roles of bacterial CTPs are poorly understood, and few direct proteolytic substrates have been identified. One bacterial CTP is the CtpA protease of Pseudomonas aeruginosa, which is required for type III secretion system (T3SS) function and for virulence in a mouse model of acute pneumonia. Here, we have investigated the function of CtpA in P. aeruginosa and identified some of the proteins it cleaves. We discovered that CtpA forms a complex with a previously uncharacterized protein, which we have named LbcA (lipoprotein binding partner of CtpA). LbcA is required for CtpA activity in vivo and promotes its activity in vitro. We have also identified four proteolytic substrates of CtpA, all of which are uncharacterized proteins predicted to cleave the peptide cross-links within peptidoglycan. Consistent with this, a ctpA null mutant was found to have fewer peptidoglycan cross-links than the wild type and grew slowly in salt-free medium. Intriguingly, the accumulation of just one of the CtpA substrates was required for some ΔctpA mutant phenotypes, including the defective T3SS. We propose that LbcA-CtpA is a proteolytic complex in the P. aeruginosa cell envelope, which controls the activity of several peptidoglycan cross-link hydrolases by degrading them. Furthermore, based on these and other findings, we suggest that many bacterial CTPs might be similarly controlled by partner proteins as part of a widespread mechanism to control peptidoglycan hydrolase activity. Bacterial carboxy-terminal processing proteases (CTPs) are widely conserved and have been associated with the virulence of several species. However, their roles are poorly understood, and few direct substrates have been identified in any species. Pseudomonas aeruginosa is an important human pathogen in which one CTP, known as CtpA, is required for type III secretion system function and for virulence. This work provides an important advance by showing that CtpA works with a previously uncharacterized binding partner to degrade four substrates. These substrates are all predicted to hydrolyze peptidoglycan cross-links, suggesting that the CtpA complex is an important control mechanism for peptidoglycan hydrolysis. This is likely to emerge as a widespread mechanism used by diverse bacteria to control some of their peptidoglycan hydrolases. This is significant, given the links between CTPs and virulence in several pathogens and the importance of peptidoglycan remodeling to almost all bacterial cells.
Collapse
|
22
|
Yang L, Gan Y, Yang L, Jiang B, Tang J. Peptidoglycan hydrolysis mediated by the amidase AmiC and its LytM activator NlpD is critical for cell separation and virulence in the phytopathogen Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2018; 19:1705-1718. [PMID: 29240286 PMCID: PMC6638016 DOI: 10.1111/mpp.12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
The essential stages of bacterial cell separation are described as the synthesis and hydrolysis of septal peptidoglycan (PG). The amidase, AmiC, which cleaves the peptide side-chains linked to the glycan strands, contributes critically to this process and has been studied extensively in model strains of Escherichia coli. However, insights into the contribution of this protein to other processes in the bacterial cell have been limited. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogen that causes black rot disease in many economically important plants. We investigated how AmiC and LytM family regulators, NlpD and EnvC, contribute to virulence and cell separation in this organism. Biochemical analyses of purified AmiC demonstrated that it could hydrolyse PG and its activity could be potentiated by the presence of the regulator NlpD. We also established that deletion of the genes encoding amiC1 or nlpD led to a reduction in virulence as well as effects on colony-forming units and cell morphology. Moreover, further genetic and biochemical evidence showed that AmiC1 and NlpD affect the secretion of type III effector XC3176 and hypersensitive response (HR) induction in planta. These findings indicate that, in addition to their well-studied role(s) in cell separation, AmiC and NlpD make an important contribution to the type III secretion (T3S) and virulence regulation in this important plant pathogen.
Collapse
Affiliation(s)
- Li‐Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Yong‐Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Li‐Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| |
Collapse
|
23
|
Vijayaraghavan J, Kumar V, Krishnan NP, Kaufhold RT, Zeng X, Lin J, van den Akker F. Structural studies and molecular dynamics simulations suggest a processive mechanism of exolytic lytic transglycosylase from Campylobacter jejuni. PLoS One 2018; 13:e0197136. [PMID: 29758058 PMCID: PMC5951611 DOI: 10.1371/journal.pone.0197136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022] Open
Abstract
The bacterial soluble lytic transglycosylase (LT) breaks down the peptidoglycan (PG) layer during processes such as cell division. We present here crystal structures of the soluble LT Cj0843 from Campylobacter jejuni with and without bulgecin A inhibitor in the active site. Cj0843 has a doughnut shape similar but not identical to that of E. coli SLT70. The C-terminal catalytic domain is preceded by an L-domain, a large helical U-domain, a flexible linker, and a small N-terminal NU-domain. The flexible linker allows the NU-domain to reach over and complete the circular shape, using residues conserved in the Epsilonproteobacteria LT family. The inner surface of the Cj0843 doughnut is mostly positively charged including a pocket that has 8 Arg/Lys residues. Molecular dynamics simulations with PG strands revealed a potential functional role for this pocket in anchoring the negatively charged terminal tetrapeptide of the PG during several steps in the reaction including homing and aligning the PG strand for exolytic cleavage, and subsequent ratcheting of the PG strand to enhance processivity in degrading PG strands.
Collapse
Affiliation(s)
- Jagamya Vijayaraghavan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Vijay Kumar
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Nikhil P. Krishnan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ross T. Kaufhold
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Ximin Zeng
- Institute of agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Jun Lin
- Institute of agriculture, University of Tennessee, Knoxville, TN, United States of America
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States of America
- * E-mail:
| |
Collapse
|
24
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
25
|
Abstract
Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Collapse
|
26
|
Hausner J, Hartmann N, Jordan M, Büttner D. The Predicted Lytic Transglycosylase HpaH from Xanthomonas campestris pv. vesicatoria Associates with the Type III Secretion System and Promotes Effector Protein Translocation. Infect Immun 2017; 85:e00788-16. [PMID: 27895129 PMCID: PMC5278175 DOI: 10.1128/iai.00788-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023] Open
Abstract
The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which spans both bacterial membranes and translocates effector proteins into plant cells. The assembly of the T3S system presumably involves the predicted lytic transglycosylase (LT) HpaH, which is encoded adjacent to the T3S gene cluster. Bacterial LTs degrade peptidoglycan and often promote the formation of membrane-spanning macromolecular protein complexes. In the present study, we show that HpaH localizes to the bacterial periplasm and binds to peptidoglycan as well as to components of the T3S system, including the predicted periplasmic inner rod proteins HrpB1 and HrpB2 as well as the pilus protein HrpE. In vivo translocation assays revealed that HpaH promotes the translocation of various effector proteins and of early substrates of the T3S system, suggesting a general contribution of HpaH to type III-dependent protein export. Mutant studies and the analysis of reporter fusions showed that the N-terminal region of HpaH contributes to protein function and is proteolytically cleaved. The N-terminally truncated HpaH cleavage product is secreted into the extracellular milieu by a yet-unknown transport pathway, which is independent of the T3S system.
Collapse
Affiliation(s)
- Jens Hausner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nadine Hartmann
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Jordan
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol 2017; 44:87-100. [PMID: 28109980 DOI: 10.1016/j.sbi.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 01/26/2023]
Abstract
The major component of bacterial cell wall is peptidoglycan (PG), a complex polymer formed by long glycan chains cross-linked by peptide stems. PG is in constant equilibrium requiring well-orchestrated coordination between synthesis and degradation. The resulting cell-wall fragments can be recycled, act as messengers for bacterial communication, as effector molecules in immune response or as signaling molecules triggering antibiotics resistance. Tailoring and recycling of PG requires the cleavage of different covalent bonds of the PG sacculi by a diverse set of specific enzymes whose activities are strictly regulated. Here, we review the molecular mechanisms that govern PG remodeling focusing on the structural information available for the bacterial lytic enzymes and the mechanisms by which they recognize their substrates.
Collapse
|
28
|
Abstract
Most gene clusters encoding multiprotein complexes of the bacterial cell envelope, such as conjugation and secretion systems, Type IV pili, and flagella, bear a gene encoding an enzyme with peptidoglycan hydrolase activity. These enzymes are usually glycoside hydrolases that cleave the glycan chains of the peptidoglycan. Their activities are spatially controlled to avoid cell lysis and to create localized rearrangement of the cell wall. This is assured by interaction with the structural subunits of the apparatus. Here we describe protocols to test the peptidoglycan hydrolase activity of these proteins in vitro and in solution.
Collapse
|
29
|
Santin YG, Cascales E. Domestication of a housekeeping transglycosylase for assembly of a Type VI secretion system. EMBO Rep 2016; 18:138-149. [PMID: 27920034 DOI: 10.15252/embr.201643206] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/06/2023] Open
Abstract
The type VI secretion system (T6SS) is an anti-bacterial weapon comprising a contractile tail anchored to the cell envelope by a membrane complex. The TssJ, TssL, and TssM proteins assemble a 1.7-MDa channel complex that spans the cell envelope, including the peptidoglycan layer. The electron microscopy structure of the TssJLM complex revealed that it has a diameter of ~18 nm in the periplasm, which is larger than the size of peptidoglycan pores (~2 nm), hence questioning how the T6SS membrane complex crosses the peptidoglycan layer. Here, we report that the MltE housekeeping lytic transglycosylase (LTG) is required for T6SS assembly in enteroaggregative Escherichia coli Protein-protein interaction studies further demonstrated that MltE is recruited to the periplasmic domain of TssM. In addition, we show that TssM significantly stimulates MltE activity in vitro and that MltE is required for the late stages of T6SS membrane complex assembly. Collectively, our data provide the first example of domestication and activation of a LTG encoded within the core genome for the assembly of a secretion system.
Collapse
Affiliation(s)
- Yoann G Santin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ - CNRS, Marseille Cedex 20, France
| |
Collapse
|
30
|
Abstract
Understanding the interplay between antibiotic resistance and bacterial fitness and virulence is essential to guide individual treatments and improve global antibiotic policies. A paradigmatic example of a resistance mechanism is the intrinsic inducible chromosomal β-lactamase AmpC from multiple Gram-negative bacteria, including Pseudomonas aeruginosa, a major nosocomial pathogen. The regulation of ampC expression is intimately linked to peptidoglycan recycling, and AmpC-mediated β-lactam resistance is frequently mediated by inactivating mutations in ampD, encoding an N-acetyl-anhydromuramyl-l-alanine amidase, affecting the levels of ampC-activating muropeptides. Here we dissect the impact of the multiple pathways causing AmpC hyperproduction on P. aeruginosa fitness and virulence. Through a detailed analysis, we demonstrate that the lack of all three P. aeruginosa AmpD amidases causes a dramatic effect in fitness and pathogenicity, severely compromising growth rates, motility, and cytotoxicity; the latter effect is likely achieved by repressing key virulence factors, such as protease LasA, phospholipase C, or type III secretion system components. We also show that ampC overexpression is required but not sufficient to confer the growth-motility-cytotoxicity impaired phenotype and that alternative pathways leading to similar levels of ampC hyperexpression and resistance, such as those involving PBP4, had no fitness-virulence cost. Further analysis indicated that fitness-virulence impairment is caused by overexpressing ampC in the absence of cell wall recycling, as reproduced by expressing ampC from a plasmid in an AmpG (muropeptide permease)-deficient background. Thus, our findings represent a major step in the understanding of β-lactam resistance biology and its interplay with fitness and pathogenesis. IMPORTANCE Understanding the impact of antibiotic resistance mechanisms on bacterial pathogenesis is critical to curb the spread of antibiotic resistance. A particularly noteworthy antibiotic resistance mechanism is the β-lactamase AmpC, produced by Pseudomonas aeruginosa, a major pathogen causing hospital-acquired infections. The regulation of AmpC is linked to the cell wall recycling pathways, and frequently, resistance to β-lactams is caused by mutation of several of the components of the cell wall recycling pathways such as AmpD. Here we dissect the impact of the pathways for AmpC hyperproduction on virulence, showing that the lack of all three P. aeruginosa AmpD amidases causes a major effect in fitness and pathogenicity, compromising growth, motility, and cytotoxicity. Further analysis indicated that fitness-virulence impairment is specifically caused by the hyperproduction of AmpC in the absence of cell wall recycling. Our work provides valuable information for delineating future strategies for combating P. aeruginosa infections by simultaneously targeting virulence and antibiotic resistance.
Collapse
|
31
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
32
|
Genetic Dissection of the Type VI Secretion System in Acinetobacter and Identification of a Novel Peptidoglycan Hydrolase, TagX, Required for Its Biogenesis. mBio 2016; 7:mBio.01253-16. [PMID: 27729508 PMCID: PMC5061870 DOI: 10.1128/mbio.01253-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread secretory apparatus produced by Gram-negative bacteria that has emerged as a potent mediator of antibacterial activity during interbacterial interactions. Most Acinetobacter species produce a genetically conserved T6SS, although the expression and functionality of this system vary among different strains. Some pathogenic Acinetobacter baumannii strains activate this secretion system via the spontaneous loss of a plasmid carrying T6SS repressors. In this work, we compared the expression of T6SS-related genes via transcriptome sequencing and differential proteomics in cells with and without the plasmid. This approach, together with the mutational analysis of the T6SS clusters, led to the determination of the genetic components required to elaborate a functional T6SS in the nosocomial pathogen A. baumannii and the nonpathogen A. baylyi By constructing a comprehensive combination of mutants with changes in the T6SS-associated vgrG genes, we delineated their relative contributions to T6SS function. We further determined the importance of two effectors, including an effector-immunity pair, for antibacterial activity. Our genetic analysis led to the identification of an essential membrane-associated structural component named TagX, which we have characterized as a peptidoglycan hydrolase possessing l,d-endopeptidase activity. TagX shows homology to known bacteriophage l,d-endopeptidases and is conserved in the T6SS clusters of several bacterial species. We propose that TagX is the first identified enzyme that fulfills the important role of enabling the transit of T6SS machinery across the peptidoglycan layer of the T6SS-producing bacterium. IMPORTANCE Acinetobacter baumannii is one of the most troublesome and least investigated multidrug-resistant bacterial pathogens. We have previously shown that A. baumannii employs a T6SS to eliminate competing bacteria. Here we provide a comprehensive analysis of the components of the T6SS of Acinetobacter, and our results provide genetic and functional insights into the Acinetobacter T6SS. Through this analysis, we identified a novel peptidoglycan hydrolase, TagX, that is required for biogenesis of the T6SS apparatus. This is the first peptidoglycanase specialized in T6SS function identified in any species. We propose that this enzyme is required for the spatially and temporally regulated digestion of peptidoglycan to allow assembly of the T6SS machinery.
Collapse
|
33
|
Domínguez-Gil T, Molina R, Alcorlo M, Hermoso JA. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens. Drug Resist Updat 2016; 28:91-104. [PMID: 27620957 DOI: 10.1016/j.drup.2016.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway.
Collapse
Affiliation(s)
- Teresa Domínguez-Gil
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Martín Alcorlo
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Inst. Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
| |
Collapse
|
34
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
35
|
Modulation of the Lytic Activity of the Dedicated Autolysin for Flagellum Formation SltF by Flagellar Rod Proteins FlgB and FlgF. J Bacteriol 2016; 198:1847-56. [PMID: 27114466 DOI: 10.1128/jb.00203-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED SltF was identified previously as an autolysin required for the assembly of flagella in the alphaproteobacteria, but the nature of its peptidoglycan lytic activity remained unknown. Sequence alignment analyses suggest that it could function as either a muramidase, lytic transglycosylase, or β-N-acetylglucosaminidase. Recombinant SltF from Rhodobacter sphaeroides was purified to apparent homogeneity, and it was demonstrated to function as a lytic transglycosylase based on enzymatic assays involving mass spectrometric analyses. Circular dichroism (CD) analysis determined that it is composed of 83.4% α-structure and 1.48% β-structure and thus is similar to family 1A lytic transglycosylases. However, alignment of apparent SltF homologs identified in the genome database defined a new subfamily of the family 1 lytic transglycosylases. SltF was demonstrated to be endo-acting, cleaving within chains of peptidoglycan, with optimal activity at pH 7.0. Its activity is modulated by two flagellar rod proteins, FlgB and FlgF: FlgB both stabilizes and stimulates SltF activity, while FlgF inhibits it. Invariant Glu57 was confirmed as the sole catalytic acid/base residue of SltF. IMPORTANCE The bacterial flagellum is comprised of a basal body, hook, and helical filament, which are connected by a rod structure. With a diameter of approximately 4 nm, the rod is larger than the estimated pore size within the peptidoglycan sacculus, and hence its insertion requires the localized and controlled lysis of this essential cell wall component. In many beta- and gammaproteobacteria, this lysis is catalyzed by the β-N-acetylglucosaminidase domain of FlgJ. However, FlgJ of the alphaproteobacteria lacks this activity and instead it recruits a separate enzyme, SltF, for this purpose. In this study, we demonstrate that SltF functions as a newly identified class of lytic transglycosylases and that its autolytic activity is uniquely modulated by two rod proteins, FlgB and FlgF.
Collapse
|
36
|
Portaliou AG, Tsolis KC, Loos MS, Zorzini V, Economou A. Type III Secretion: Building and Operating a Remarkable Nanomachine. Trends Biochem Sci 2016; 41:175-189. [DOI: 10.1016/j.tibs.2015.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
|
37
|
Herlihey FA, Clarke AJ. Controlling Autolysis During Flagella Insertion in Gram-Negative Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:41-56. [PMID: 27722959 DOI: 10.1007/5584_2016_52] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flagellum is an important macromolecular machine for many pathogenic bacteria. It is a hetero-oligomeric structure comprised of three major sub-structures: basal body, hook and thin helical filament. An important step during flagellum assembly is the localized and controlled degradation of the peptidoglycan sacculus to allow for the insertion of the rod as well as to facilitate anchoring for proper motor function. The peptidoglycan lysis events require specialized lytic enzymes, β-N-acetylglucosaminidases and lytic transglycosylases, which differ in flagellated proteobacteria. Due to their autolytic activity, these enzymes need to be controlled in order to prevent cellular lysis. This review summarizes are current understanding of the peptidoglycan lysis events required for flagellum assembly and motility with a main focus on Gram-negative bacteria.
Collapse
Affiliation(s)
- Francesca A Herlihey
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
38
|
Bergeron JRC, Fernández L, Wasney GA, Vuckovic M, Reffuveille F, Hancock REW, Strynadka NCJ. The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing. J Biol Chem 2015; 291:1676-1691. [PMID: 26589798 DOI: 10.1074/jbc.m115.684423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022] Open
Abstract
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed "ruler" protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a "ball-and-chain" architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein's N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.
Collapse
Affiliation(s)
- Julien R C Bergeron
- From the Department of Biochemistry and Molecular Biology,; the Centre for Blood Research, and
| | - Lucia Fernández
- the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | - Fany Reffuveille
- the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert E W Hancock
- the Centre for Blood Research, and; the Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- From the Department of Biochemistry and Molecular Biology,; the Centre for Blood Research, and.
| |
Collapse
|
39
|
Connolly JPR, Finlay BB, Roe AJ. From ingestion to colonization: the influence of the host environment on regulation of the LEE encoded type III secretion system in enterohaemorrhagic Escherichia coli. Front Microbiol 2015; 6:568. [PMID: 26097473 PMCID: PMC4456613 DOI: 10.3389/fmicb.2015.00568] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) binds to host tissue and intimately attaches to intestinal cells using a dedicated type III secretion system (T3SS). This complex multi-protein organelle is encoded within a large pathogenicity island called the locus of enterocyte effacement (LEE), which is subject to extensive regulatory control. Over the past 15 years we have gained a wealth of knowledge concerning how the LEE is regulated transcriptionally by specific, global and phage encoded regulators. More recently, significant advances have been made in our understanding of how specific signals, including host or microbiota derived metabolic products and various nutrient sources, can affect how the LEE-encoded T3SS is regulated. In this review we discuss regulation of the LEE, focusing on how these physiologically relevant signals are sensed and how they affect the expression of this major virulence factor. The implications for understanding the disease process by specific regulatory mechanisms are also discussed.
Collapse
Affiliation(s)
- James P R Connolly
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC, Canada
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|