1
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
2
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
3
|
Chaudhuri D, Banerjee S, Chakraborty S, Chowdhury D, Haldar S. Direct Observation of the Mechanical Role of Bacterial Chaperones in Protein Folding. Biomacromolecules 2022; 23:2951-2967. [PMID: 35678300 DOI: 10.1021/acs.biomac.2c00451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein folding under force is an integral source of generating mechanical energy in various cellular processes, ranging from protein translation to degradation. Although chaperones are well known to interact with proteins under mechanical force, how they respond to force and control cellular energetics remains unknown. To address this question, we introduce a real-time magnetic tweezer technology herein to mimic the physiological force environment on client proteins, keeping the chaperones unperturbed. We studied two structurally distinct client proteins--protein L and talin with seven different chaperones─independently and in combination and proposed a novel mechanical activity of chaperones. We found that chaperones behave differently, while these client proteins are under force, than their previously known functions. For instance, tunnel-associated chaperones (DsbA and trigger factor), otherwise working as holdase without force, assist folding under force. This process generates an additional mechanical energy up to ∼147 zJ to facilitate translation or translocation. However, well-known cytoplasmic foldase chaperones (PDI, thioredoxin, or DnaKJE) do not possess the mechanical folding ability under force. Notably, the transferring chaperones (DnaK, DnaJ, and SecB) act as holdase and slow down the folding process, both in the presence and absence of force, to prevent misfolding of the client proteins. This provides an emerging insight of mechanical roles of chaperones: they can generate or consume energy by shifting the energy landscape of the client proteins toward a folded or an unfolded state, suggesting an evolutionary mechanism to minimize energy consumption in various biological processes.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
4
|
Beaussart A, Canonico F, Mazon H, Hidalgo J, Cianférani S, Le Cordier H, Kriznik A, Rahuel-Clermont S. Probing the mechanism of the peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. NANOSCALE HORIZONS 2022; 7:515-525. [PMID: 35234779 DOI: 10.1039/d2nh00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peroxiredoxins from the Prx1 subfamily (Prx) are highly regulated multifunctional proteins involved in oxidative stress response, redox signaling and cell protection. Prx is a homodimer that associates into a decamer. The monomer C-terminus plays intricate roles in Prx catalytic functions, decamer stability and interaction with its redox partner, the small reductase sulfiredoxin (Srx), that regulates the switching between Prx cellular functions. As only static structures of covalent Prx-Srx complexes have been reported, whether Srx binding dissociates the decameric assembly and how Prx subunit flexibility impacts complex formation are unknown. Here, we assessed the non-covalent interaction mechanism and dynamics in the solution of Saccharomyces cerevisiae Srx with the ten subunits of Prx Tsa1 at the decamer level via a combination of multiscale biophysical approaches including native mass spectrometry. We show that the ten subunits of the decamer can be saturated by ten Srx molecules and that the Tsa1 decamer in complex with Srx does not dissociate in solution. Furthermore, the binding events of atomic force microscopy (AFM) tip-grafted Srx molecules to Tsa1 individual subunits were relevant to the interactions between free molecules in solution. Combined with protein engineering and rapid kinetics, the observation of peculiar AFM force-distance signatures revealed that Tsa1 C-terminus flexibility controls Tsa1/Srx two-step binding and dynamics and determines the force-induced dissociation of Srx from each subunit of the decameric complex in a sequential or concerted mode. This combined approach from the solution to the single-molecule level offers promising prospects for understanding oligomeric protein interactions with their partners.
Collapse
Affiliation(s)
| | | | - Hortense Mazon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Jorge Hidalgo
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS CEA, 67087 Strasbourg, France
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| | - Sophie Rahuel-Clermont
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| |
Collapse
|
5
|
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution. Commun Biol 2022; 5:307. [PMID: 35379917 PMCID: PMC8979947 DOI: 10.1038/s42003-022-03258-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/11/2022] [Indexed: 12/18/2022] Open
Abstract
Talin as a critical focal adhesion mechanosensor exhibits force-dependent folding dynamics and concurrent interactions. Being a cytoplasmic protein, talin also might interact with several cytosolic chaperones; however, the roles of chaperones in talin mechanics remain elusive. To address this question, we investigated the force response of a mechanically stable talin domain with a set of well-known unfoldase (DnaJ, DnaK) and foldase (DnaKJE, DsbA) chaperones, using single-molecule magnetic tweezers. Our findings demonstrate that chaperones could affect adhesion proteins’ stability by changing their folding mechanics; while unfoldases reduce their unfolding force from ~11 pN to ~6 pN, foldase shifts it upto ~15 pN. Since talin is mechanically synced within 2 pN force ranges, these changes are significant in cellular conditions. Furthermore, we determined that chaperones directly reshape the energy landscape of talin: unfoldases decrease the unfolding barrier height from 26.8 to 21.7 kBT, while foldases increase it to 33.5 kBT. We reconciled our observations with eukaryotic Hsp70 and Hsp40 and observed their similar function of decreasing the talin unfolding barrier. Quantitative mapping of this chaperone-induced talin folding landscape directly illustrates that chaperones perturb the adhesion protein stability under physiological force, thereby, influencing their force-dependent interactions and adhesion dynamics. Chakraborty et al. uses single-molecule magnetic tweezers to investigate the chaperone-modulated talin protein mechanics. The results showed that chaperones are involved in the regulation of talin folding/unfolding under mechanical force with some chaperones stabilizing talin and increasing the force, whereas others destabilize it and reduce the force.
Collapse
|
6
|
Eckels EC, Chaudhuri D, Chakraborty S, Echelman DJ, Haldar S. DsbA is a redox-switchable mechanical chaperone. Chem Sci 2021; 12:11109-11120. [PMID: 34522308 PMCID: PMC8386657 DOI: 10.1039/d1sc03048e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
DsbA is a ubiquitous bacterial oxidoreductase that associates with substrates during and after translocation, yet its involvement in protein folding and translocation remains an open question. Here we demonstrate a redox-controlled chaperone activity of DsbA, on both cysteine-containing and cysteine-free substrates, using magnetic tweezers-based single molecule force spectroscopy that enables independent measurements of oxidoreductase activity and chaperone behavior. Interestingly we found that this chaperone activity is tuned by the oxidation state of DsbA; oxidized DsbA is a strong promoter of folding, but the effect is weakened by the reduction of the catalytic CXXC motif. We further localize the chaperone binding site of DsbA using a seven-residue peptide which effectively blocks the chaperone activity. We found that the DsbA assisted folding of proteins in the periplasm generates enough mechanical work to decrease the ATP consumption needed for periplasmic translocation by up to 33%.
Collapse
Affiliation(s)
- Edward C Eckels
- Department of Biological Sciences, Columbia University New York NY 10027 USA
- Department of Internal Medicine, Columbia University Medical Center New York NY 10032 USA
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Soham Chakraborty
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| | - Daniel J Echelman
- Department of Biological Sciences, Columbia University New York NY 10027 USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University Sonepat Haryana 131029 India
| |
Collapse
|
7
|
Alonso-Caballero A, Echelman DJ, Tapia-Rojo R, Haldar S, Eckels EC, Fernandez JM. Protein folding modulates the chemical reactivity of a Gram-positive adhesin. Nat Chem 2021; 13:172-181. [PMID: 33257887 PMCID: PMC7858226 DOI: 10.1038/s41557-020-00586-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Gram-positive bacteria colonize mucosal tissues, withstanding large mechanical perturbations such as coughing, which generate shear forces that exceed the ability of non-covalent bonds to remain attached. To overcome these challenges, the pathogen Streptococcus pyogenes utilizes the protein Cpa, a pilus tip-end adhesin equipped with a Cys-Gln thioester bond. The reactivity of this bond towards host surface ligands enables covalent anchoring; however, colonization also requires cell migration and spreading over surfaces. The molecular mechanisms underlying these seemingly incompatible requirements remain unknown. Here we demonstrate a magnetic tweezers force spectroscopy assay that resolves the dynamics of the Cpa thioester bond under force. When folded at forces <6 pN, the Cpa thioester bond reacts reversibly with amine ligands, which are common in inflammation sites; however, mechanical unfolding and exposure to forces >6 pN block thioester reformation. We hypothesize that this folding-coupled reactivity switch (termed a smart covalent bond) could allow the adhesin to undergo binding and unbinding to surface ligands under low force and remain covalently attached under mechanical stress.
Collapse
Affiliation(s)
- Alvaro Alonso-Caballero
- Department of Biological Sciences, Columbia University, NY
10027, USA,Correspondence and request of material should be
addressed to A.A-C.:
| | | | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Shubhasis Haldar
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | - Edward C. Eckels
- Department of Biological Sciences, Columbia University, NY
10027, USA
| | | |
Collapse
|
8
|
The Mechanical Power of Titin Folding. Cell Rep 2020; 27:1836-1847.e4. [PMID: 31067467 PMCID: PMC6937205 DOI: 10.1016/j.celrep.2019.04.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/09/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The delivery of mechanical power, a crucial component of animal motion, is constrained by the universal compromise between the force and the velocity of its constituent molecular systems. While the mechanisms of force generation have been studied at the single molecular motor level, there is little understanding of the magnitude of power that can be generated by folding proteins. Here, we use single-molecule force spectroscopy techniques to measure the force-velocity relation of folding titin domains that contain single internal disulfide bonds, a common feature throughout the titin I-band. We find that formation of the disulfide regulates the peak power output of protein folding in an all-or-none manner, providing at 6.0 pN, for example, a boost from 0 to 6,000 zW upon oxidation. This mechanism of power generation from protein folding is of great importance for muscle, where titin domains may unfold and refold with each extension and contraction of the sarcomere. Eckels et al. use single-molecule magnetic tweezers to simultaneously probe the folding dynamics of titin Ig domains and monitor the redox status of single disulfides within the Ig fold. Oxidation of the disulfide bond greatly increases both the folding force and the magnitude of power delivered by protein folding.
Collapse
|
9
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
10
|
Mechanical architecture and folding of E. coli type 1 pilus domains. Nat Commun 2018; 9:2758. [PMID: 30013059 PMCID: PMC6048123 DOI: 10.1038/s41467-018-05107-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Uropathogenic Escherichia coli attach to tissues using pili type 1. Each pilus is composed by thousands of coiled FimA domains followed by the domains of the tip fibrillum, FimF-FimG-FimH. The domains are linked by non-covalent β-strands that must resist mechanical forces during attachment. Here, we use single-molecule force spectroscopy to measure the mechanical contribution of each domain to the stability of the pilus and monitor the oxidative folding mechanism of a single Fim domain assisted by periplasmic FimC and the oxidoreductase DsbA. We demonstrate that pilus domains bear high mechanical stability following a hierarchy by which domains close to the tip are weaker than those close to or at the pilus rod. During folding, this remarkable stability is achieved by the intervention of DsbA that not only forms strategic disulfide bonds but also serves as a chaperone assisting the folding of the domains. The pilus type 1 of uropathogenic E. coli must resist mechanical forces to remain attached to the epithelium. Here the authors use single-molecule force spectroscopy to demonstrate a hierarchy of mechanical stability among the pilus domains and show that the oxidoreductase DsbA also acts as a folding chaperone on the domains.
Collapse
|
11
|
Schönfelder J, Alonso-Caballero A, De Sancho D, Perez-Jimenez R. The life of proteins under mechanical force. Chem Soc Rev 2018; 47:3558-3573. [PMID: 29473060 DOI: 10.1039/c7cs00820a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although much of our understanding of protein folding comes from studies of isolated protein domains in bulk, in the cellular environment the intervention of external molecular machines is essential during the protein life cycle. During the past decade single molecule force spectroscopy techniques have been extremely useful to deepen our understanding of these interventional molecular processes, as they allow for monitoring and manipulating mechanochemical events in individual protein molecules. Here, we review some of the critical steps in the protein life cycle, starting with the biosynthesis of the nascent polypeptide chain in the ribosome, continuing with the folding supported by chaperones and the translocation into different cell compartments, and ending with proteolysis in the proteasome. Along these steps, proteins experience molecular forces often combined with chemical transformations, affecting their folding and structure, which are measured or mimicked in the laboratory by the application of force with a single molecule apparatus. These mechanochemical reactions can potentially be used as targets for fighting against diseases. Inspired by these insightful experiments, we devise an outlook on the emerging field of mechanopharmacology, which reflects an alternative paradigm for drug design.
Collapse
|
12
|
|
13
|
Plasticity in the Oxidative Folding Pathway of the High Affinity Nerita Versicolor Carboxypeptidase Inhibitor (NvCI). Sci Rep 2017; 7:5457. [PMID: 28710462 PMCID: PMC5511257 DOI: 10.1038/s41598-017-05657-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/01/2017] [Indexed: 12/28/2022] Open
Abstract
Nerita Versicolor carboxypeptidase inhibitor (NvCI) is the strongest inhibitor reported so far for the M14A subfamily of carboxypeptidases. It comprises 53 residues and a protein fold composed of a two-stranded antiparallel β sheet connected by three loops and stabilized by three disulfide bridges. Here we report the oxidative folding and reductive unfolding pathways of NvCI. Much debate has gone on whether protein conformational folding guides disulfide bond formation or instead they are disulfide bonds that favour the arrangement of local or global structural elements. We show here that for NvCI both possibilities apply. Under physiological conditions, this protein folds trough a funnelled pathway involving a network of kinetically connected native-like intermediates, all sharing the disulfide bond connecting the two β-strands. In contrast, under denaturing conditions, the folding of NvCI is under thermodynamic control and follows a "trial and error" mechanism, in which an initial quasi-stochastic population of intermediates rearrange their disulfide bonds to attain the stable native topology. Despite their striking mechanistic differences, the efficiency of both folding routes is similar. The present study illustrates thus a surprising plasticity in the folding of this extremely stable small disulfide-rich inhibitor and provides the basis for its redesign for biomedical applications.
Collapse
|
14
|
Manteca A, Schönfelder J, Alonso-Caballero A, Fertin MJ, Barruetabeña N, Faria BF, Herrero-Galán E, Alegre-Cebollada J, De Sancho D, Perez-Jimenez R. Mechanochemical evolution of the giant muscle protein titin as inferred from resurrected proteins. Nat Struct Mol Biol 2017; 24:652-657. [PMID: 28671667 DOI: 10.1038/nsmb.3426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023]
Abstract
The sarcomere-based structure of muscles is conserved among vertebrates; however, vertebrate muscle physiology is extremely diverse. A molecular explanation for this diversity and its evolution has not been proposed. We use phylogenetic analyses and single-molecule force spectroscopy (smFS) to investigate the mechanochemical evolution of titin, a giant protein responsible for the elasticity of muscle filaments. We resurrect eight-domain fragments of titin corresponding to the common ancestors to mammals, sauropsids, and tetrapods, which lived 105-356 Myr ago, and compare them with titin fragments from some of their modern descendants. We demonstrate that the resurrected titin molecules are rich in disulfide bonds and display high mechanical stability. These mechanochemical elements have changed over time, creating a paleomechanical trend that seems to correlate with animal body size, allowing us to estimate the sizes of extinct species. We hypothesize that mechanical adjustments in titin contributed to physiological changes that allowed the muscular development and diversity of modern tetrapods.
Collapse
Affiliation(s)
| | | | | | | | | | - Bruna F Faria
- Laboratory of Molecular Modeling, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Elias Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - David De Sancho
- CIC nanoGUNE, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Raul Perez-Jimenez
- CIC nanoGUNE, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Evolution and Genomics Technologies, S. L. (Evolgene), San Sebastian, Spain
| |
Collapse
|
15
|
Manteca A, Alonso-Caballero Á, Fertin M, Poly S, De Sancho D, Perez-Jimenez R. The influence of disulfide bonds on the mechanical stability of proteins is context dependent. J Biol Chem 2017. [PMID: 28642368 DOI: 10.1074/jbc.m117.784934] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disulfide bonds play a crucial role in proteins, modulating their stability and constraining their conformational dynamics. A particularly important case is that of proteins that need to withstand forces arising from their normal biological function and that are often disulfide bonded. However, the influence of disulfides on the overall mechanical stability of proteins is poorly understood. Here, we used single-molecule force spectroscopy (smFS) to study the role of disulfide bonds in different mechanical proteins in terms of their unfolding forces. For this purpose, we chose the pilus protein FimG from Gram-negative bacteria and a disulfide-bonded variant of the I91 human cardiac titin polyprotein. Our results show that disulfide bonds can alter the mechanical stability of proteins in different ways depending on the properties of the system. Specifically, disulfide-bonded FimG undergoes a 30% increase in its mechanical stability compared with its reduced counterpart, whereas the unfolding force of I91 domains experiences a decrease of 15% relative to the WT form. Using a coarse-grained simulation model, we rationalized that the increase in mechanical stability of FimG is due to a shift in the mechanical unfolding pathway. The simple topology-based explanation suggests a neutral effect in the case of titin. In summary, our results indicate that disulfide bonds in proteins act in a context-dependent manner rather than simply as mechanical lockers, underscoring the importance of considering disulfide bonds both computationally and experimentally when studying the mechanical properties of proteins.
Collapse
Affiliation(s)
- Aitor Manteca
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | | | - Marie Fertin
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
| | - Simon Poly
- the Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany, and
| | - David De Sancho
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Raul Perez-Jimenez
- From the Nanobiomechanics Laboratory, CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain, .,the IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Beedle AEM, Mora M, Lynham S, Stirnemann G, Garcia-Manyes S. Tailoring protein nanomechanics with chemical reactivity. Nat Commun 2017; 8:15658. [PMID: 28585528 PMCID: PMC5467162 DOI: 10.1038/ncomms15658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chemical route to promote non-enzymatic oxidative protein folding via disulfide isomerization based on naturally occurring small molecules. Using single-molecule force-clamp spectroscopy, supported by DFT calculations and mass spectrometry measurements, we demonstrate that subtle changes in the chemical structure of a transient mixed-disulfide intermediate adduct between a protein cysteine and an attacking low molecular-weight thiol have a dramatic effect on the protein's mechanical stability. This approach provides a general tool to rationalize the dynamics of S-thiolation and its role in modulating protein nanomechanics, offering molecular insights on how chemical reactivity regulates protein elasticity. Post-translational modifications modulate nanomechanics of proteins. Here the authors use single-molecule force-clamp spectroscopy supported by density functional theory calculations to show how reactive low-weight molecular thiol compounds directly affect mechanical protein folding.
Collapse
Affiliation(s)
- Amy E M Beedle
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, WC2R 2LS London, UK
| | - Marc Mora
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, WC2R 2LS London, UK
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, King's College London, SE5 8AF London, UK
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Univ. Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, WC2R 2LS London, UK
| |
Collapse
|
17
|
Echelman DJ, Lee AQ, Fernández JM. Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin. J Biol Chem 2017; 292:8988-8997. [PMID: 28348083 DOI: 10.1074/jbc.m117.777466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50-350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands.
Collapse
Affiliation(s)
- Daniel J Echelman
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Alex Q Lee
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Julio M Fernández
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| |
Collapse
|
18
|
The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy. J Mol Biol 2016; 428:4245-4257. [PMID: 27639437 DOI: 10.1016/j.jmb.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
One of the major challenges in modern biophysics is observing and understanding conformational changes during complex molecular processes, from the fundamental protein folding to the function of molecular machines. Single-molecule techniques have been one of the major driving forces of the huge progress attained in the last few years. Recent advances in resolution of the experimental setups, aided by theoretical developments and molecular dynamics simulations, have revealed a much higher degree of complexity inside these molecular processes than previously reported using traditional ensemble measurements. This review sums up the evolution of these developments and gives an outlook on prospective discoveries.
Collapse
|
19
|
Beedle AEM, Lynham S, Garcia-Manyes S. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat Commun 2016; 7:12490. [PMID: 27546612 PMCID: PMC4996944 DOI: 10.1038/ncomms12490] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/08/2016] [Indexed: 12/31/2022] Open
Abstract
The post-translational modification S-sulfenylation functions as a key sensor of oxidative stress. Yet the dynamics of sulfenic acid in proteins remains largely elusive due to its fleeting nature. Here we use single-molecule force-clamp spectroscopy and mass spectrometry to directly capture the reactivity of an individual sulfenic acid embedded within the core of a single Ig domain of the titin protein. Our results demonstrate that sulfenic acid is a crucial short-lived intermediate that dictates the protein's fate in a conformation-dependent manner. When exposed to the solution, sulfenic acid rapidly undergoes further chemical modification, leading to irreversible protein misfolding; when cryptic in the protein's microenvironment, it readily condenses with a neighbouring thiol to create a protective disulfide bond, which assists the functional folding of the protein. This mechanism for non-enzymatic oxidative folding provides a plausible explanation for redox-modulated stiffness of proteins that are physiologically exposed to mechanical forces, such as cardiac titin. Protein S-sulfenylation is a posttranslational modification that can act as a sensor of redox oxidative stress. Here the authors show that, following mechanical unfolding, sulfenic acid drives disulfide bond reformation and guides non-enzymatic oxidative folding.
Collapse
Affiliation(s)
- Amy E M Beedle
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, King's College London, London SE5 8AF, UK
| | - Sergi Garcia-Manyes
- Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, London WC2R 2LS, UK
| |
Collapse
|