1
|
Quan S, Zhang J, Zhang L, Li N, Zhu L, Sun X, Xiao J. Versatile triblock peptides mimicking ABC-type heterotrimeric collagen with stabilizing salt bridges. Int J Biol Macromol 2024; 272:132446. [PMID: 38795898 DOI: 10.1016/j.ijbiomac.2024.132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Type IV collagen, a principal constituent of basement membranes, consists of six distinct α chains that assemble into both ABC and AAB-type heterotrimers. While collagen-like peptides have been investigated for heterotrimer formation, the construction of ABC-type heterotrimeric collagen mimetic peptides remains a formidable challenge, primarily due to the intricate composition and arrangement of the chains. We have herein for the first time reported the development of a versatile triblock peptide system to mimic ABC-type heterotrimeric collagen stabilized by salt bridges. The triblock peptides A, B, and C incorporate functional natural type IV collagen sequences in the center, along with charged amino acids at their N and C-terminals. By leveraging electrostatic repulsion at these charged termini, the formation of homotrimers is effectively inhibited, while stable ABC-type heterotrimers are generated through the establishment of salt bridges between oppositely charged terminals. Circular dichroism (CD) spectroscopy demonstrated that peptides A, B, and C existed as individual monomers, while they effectively formed stable ABC-type heterotrimers upon being mixed at a molar ratio of 1:1:1. Additionally, fluorescence quenching results indicated that fluorescence-labeled peptides A', B', and C' formed ABC-type heterotrimer, exhibiting comparable thermal stability as determined by CD spectroscopy. Molecular dynamics simulations elucidated the role of salt bridges between arginine and aspartic acid residues at N- and C-terminals in maintaining a unique chain register in the ABC-type heterotrimers. These triblock peptides offer a robust approach for replicating the structural and functional characteristics of type IV collagen, with promising applications in elucidating the biological roles and pathologies associated with heterotrimeric collagen.
Collapse
Affiliation(s)
- Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Lanyue Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Lijun Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Xiuxia Sun
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China.
| |
Collapse
|
2
|
Roth J, Hoop CL, Williams JK, Hayes R, Baum J. Probing the effect of glycosaminoglycan depletion on integrin interactions with collagen I fibrils in the native extracellular matrix environment. Protein Sci 2023; 32:e4508. [PMID: 36369695 PMCID: PMC9793976 DOI: 10.1002/pro.4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022]
Abstract
Fibrillar collagen-integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril-integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.
Collapse
Affiliation(s)
- Jonathan Roth
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Cody L. Hoop
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jonathan K. Williams
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Drug Product DevelopmentBristol Myers SquibbNew BrunswickNew JerseyUSA
| | - Robert Hayes
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jean Baum
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
3
|
Qiang S, Lu C, Xu F. Disrupting Effects of Osteogenesis Imperfecta Mutations Could Be Predicted by Local Hydrogen Bonding Energy. Biomolecules 2022; 12:biom12081104. [PMID: 36008998 PMCID: PMC9405839 DOI: 10.3390/biom12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Osteogenesis imperfecta(OI) is a disease caused by substitution in glycine residues with different amino acids in type I collagen (Gly-Xaa-Yaa)n. Collagen model peptides can capture the thermal stability loss of the helix after Gly mutations, most of which are homotrimers. However, a majority of natural collagen exists in heterotrimers. To investigate the effects of chain specific mutations in the natural state of collagen more accurately, here we introduce various lengths of side-chain amino acids into ABC-type heterotrimers. The disruptive effects of the mutations were characterized both experimentally and computationally. We found the stability decrease in the mutants was mainly caused by the disruption of backbone hydrogen bonds. Meanwhile, we found a threshold value of local hydrogen bonding energy that could predict triple helix folding or unfolding. Val caused the unfolding of triple helices, whereas Ser with a similar side-chain length did not. Structural details suggested that the side-chain hydroxyl group in Ser forms hydrogen bonds with the backbone, thereby compensating for the mutants’ decreased stability. Our study contributes to a better understanding of how OI mutations destabilize collagen triple helices and the molecular mechanisms underlying OI.
Collapse
|
4
|
Pilapitiya DH, Harris PWR, Hanson-Manful P, McGregor R, Kowalczyk R, Raynes JM, Carlton LH, Dobson RCJ, Baker MG, Brimble M, Lukomski S, Moreland NJ. Antibody responses to collagen peptides and streptococcal collagen-like 1 proteins in acute rheumatic fever patients. Pathog Dis 2021; 79:6311134. [PMID: 34185083 DOI: 10.1093/femspd/ftab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
Acute rheumatic fever (ARF) is a serious post-infectious immune sequelae of Group A streptococcus (GAS). Pathogenesis remains poorly understood, including the events associated with collagen autoantibody generation. GAS express streptococcal collagen-like proteins (Scl) that contain a collagenous domain resembling human collagen. Here, the relationship between antibody reactivity to GAS Scl proteins and human collagen in ARF was investigated. Serum IgG specific for a representative Scl protein (Scl1.1) together with collagen-I and collagen-IV mimetic peptides were quantified in ARF patients (n = 36) and healthy matched controls (n = 36). Reactivity to Scl1.1 was significantly elevated in ARF compared to controls (P < 0.0001) and this was mapped to the collagen-like region of the protein, rather than the N-terminal non-collagenous region. Reactivity to collagen-1 and collagen-IV peptides was also significantly elevated in ARF cases (P < 0.001). However, there was no correlation between Scl1.1 and collagen peptide antibody binding, and hierarchical clustering of ARF cases by IgG reactivity showed two distinct clusters, with Scl1.1 antigens in one and collagen peptides in the other, demonstrating that collagen autoantibodies are not immunologically related to those targeting Scl1.1. Thus, anti-collagen antibodies in ARF appear to be generated as part of the autoreactivity process, independent of any mimicry with GAS collagen-like proteins.
Collapse
Affiliation(s)
- Devaki H Pilapitiya
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paulina Hanson-Manful
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jeremy M Raynes
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Lauren H Carlton
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Baker
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Public Health, University of Otago, Wellington, New Zealand
| | - Margaret Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nicole J Moreland
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Hulgan SAH, Jalan AA, Li IC, Walker DR, Miller MD, Kosgei AJ, Xu W, Phillips GN, Hartgerink JD. Covalent Capture of Collagen Triple Helices Using Lysine–Aspartate and Lysine–Glutamate Pairs. Biomacromolecules 2020; 21:3772-3781. [DOI: 10.1021/acs.biomac.0c00878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sarah A. H. Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- Department of Biochemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - I-Che Li
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mitchell D. Miller
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abigael J. Kosgei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Weijun Xu
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - George N. Phillips
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Yeo J, Qiu Y, Jung GS, Zhang YW, Buehler MJ, Kaplan DL. Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. Biomaterials 2020; 240:119857. [PMID: 32085975 DOI: 10.1016/j.biomaterials.2020.119857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/28/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Patients with Alport syndrome (AS) exhibit blood and elevated protein levels in their urine, inflamed kidneys, and many other abnormalities. AS is attributed to mutations in type IV collagen genes, particularly glycine missense mutations in the collagenous domain of COL4A5 that disrupt common structural motifs in collagen from the repeat (Gly-Xaa-Yaa)n amino acid sequence. To characterize and elucidate the molecular mechanisms underlying how AS-related mutations perturb the structure and function of type IV collagen, experimental studies and molecular simulations were integrated to investigate the structure, stability, protease sensitivity, and integrin binding affinity of collagen-like proteins containing amino acid sequences from the α5(IV) chain and AS-related Gly missense mutations. We show adverse effects where (i) three AS-related Gly missense mutations significantly reduced the structural stability of the collagen in terms of decreased melting temperatures and calorimetric enthalpies, in conjunction with a collective drop in the external work needed to unfold the peptides containing mutation sequences; (ii) due to local unwinding around the sites of mutations, these triple helical peptides were also degraded more rapidly by trypsin and chymotrypsin, as these enzymes could access the collagenous triple helix more easily and increase the number of contacts; (iii) the mutations further abolished the ability of the recombinant collagens to bind to integrins and greatly reduced the binding affinities between collagen and integrins, thus preventing cells from adhering to these mutants. Our unified experimental and computational approach provided underlying insights needed to guide potential therapies for AS that ameliorate the adverse effects from AS disease onset and progression.
Collapse
Affiliation(s)
- Jingjie Yeo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yimin Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, 430064, PR China
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
7
|
Li IC, Hulgan SAH, Walker DR, Farndale RW, Hartgerink JD, Jalan AA. Covalent Capture of a Heterotrimeric Collagen Helix. Org Lett 2019; 21:5480-5484. [DOI: 10.1021/acs.orglett.9b01771] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- I-Che Li
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah A. H. Hulgan
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Douglas R. Walker
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Richard W. Farndale
- University of Cambridge Department of Biochemistry, Downing Site, Cambridge CB2 1QW, U.K
| | - Jeffrey D. Hartgerink
- Rice University Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Abhishek A. Jalan
- University of Bayreuth Department of Biochemistry, Universitätsstraße 30, Bayreuth 95447, Germany
| |
Collapse
|
8
|
Yao L, He M, Li D, Liu H, Wu J, Xiao J. Self-assembling bolaamphiphile-like collagen mimetic peptides. NEW J CHEM 2018. [DOI: 10.1039/c8nj00119g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bolaamphiphile-like collagen mimetic peptides with charged aspartic acids at both terminals may provide a facile peptide-based approach to construct well-defined nanostructures.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
9
|
Yao L, He M, Li D, Tian J, Liu H, Xiao J. Terminal aspartic acids promote the self-assembly of collagen mimic peptides into nanospheres. RSC Adv 2018; 8:2404-2409. [PMID: 35541475 PMCID: PMC9077330 DOI: 10.1039/c7ra11855d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023] Open
Abstract
The development of novel strategies to construct collagen mimetic peptides capable of self-assembling into higher-order structures plays a critical role in the discovery of functional biomaterials. We herein report the construction of a novel type of amphiphile-like peptide conjugating the repetitive triple helical (GPO)m sequences characteristic of collagen with terminal hydrophilic aspartic acids. The amphiphile-like collagen mimic peptides containing a variable length of (Gly-Pro-Hyp)m sequences consistently generate well-ordered nanospherical supramolecular structures. The C-terminal aspartic acids have been revealed to play a determinant role in the appropriate self-assembly of amphiphile-like collagen mimic peptides. Their presence is a prerequisite for self-assembly, and their lengths could modulate the morphology of final assemblies. We have demonstrated for the first time that amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures in addition to amphiphile-like peptides utilizing β-sheet or α-helical coiled-coil motifs. The newly developed assembly strategy together with the ubiquitous natural function of collagen may lead to the generation of novel improved biomaterials. Amphiphile-like collagen mimic peptides with terminal aspartic acids may provide a general and convenient strategy to create well-defined nanostructures.![]()
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jing Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Meta Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
10
|
Barua M, John R, Stella L, Li W, Roslin NM, Sharif B, Hack S, Lajoie-Starkell G, Schwaderer AL, Becknell B, Wuttke M, Köttgen A, Cattran D, Paterson AD, Pei Y. X-Linked Glomerulopathy Due to COL4A5 Founder Variant. Am J Kidney Dis 2017; 71:441-445. [PMID: 29198386 DOI: 10.1053/j.ajkd.2017.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/01/2017] [Indexed: 12/30/2022]
Abstract
Alport syndrome is a rare hereditary disorder caused by rare variants in 1 of 3 genes encoding for type IV collagen. Rare variants in COL4A5 on chromosome Xq22 cause X-linked Alport syndrome, which accounts for ∼80% of the cases. Alport syndrome has a variable clinical presentation, including progressive kidney failure, hearing loss, and ocular defects. Exome sequencing performed in 2 affected related males with an undefined X-linked glomerulopathy characterized by global and segmental glomerulosclerosis, mesangial hypercellularity, and vague basement membrane immune complex deposition revealed a COL4A5 sequence variant, a substitution of a thymine by a guanine at nucleotide 665 (c.T665G; rs281874761) of the coding DNA predicted to lead to a cysteine to phenylalanine substitution at amino acid 222, which was not seen in databases cataloguing natural human genetic variation, including dbSNP138, 1000 Genomes Project release version 01-11-2004, Exome Sequencing Project 21-06-2014, or ExAC 01-11-2014. Review of the literature identified 2 additional families with the same COL4A5 variant leading to similar atypical histopathologic features, suggesting a unique pathologic mechanism initiated by this specific rare variant. Homology modeling suggests that the substitution alters the structural and dynamic properties of the type IV collagen trimer. Genetic analysis comparing members of the 3 families indicated a distant relationship with a shared haplotype, implying a founder effect.
Collapse
Affiliation(s)
- Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Canada; Toronto General Research Institute, Toronto General Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| | - Rohan John
- Department of Pathology, University Health Network, Toronto, Canada
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Weili Li
- The Centre for Applied Genomics, Hospital for Sick Children's, Brampton, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, Hospital for Sick Children's, Brampton, Canada
| | - Bedra Sharif
- Division of Nephrology, University Health Network, Toronto, Canada
| | - Saidah Hack
- Division of Nephrology, University Health Network, Toronto, Canada
| | - Ginette Lajoie-Starkell
- William Osler Health System, Brampton, Canada; Department of Pathobiology and Laboratory Medicine, University of Toronto, Toronto, Canada
| | - Andrew L Schwaderer
- Nephrology Section, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, Ohio State University Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Brian Becknell
- Nephrology Section, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, Ohio State University Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany; Division of Nephrology, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center and Faculty of Medicine - University of Freiburg, Freiburg, Germany; Division of Nephrology, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Daniel Cattran
- Division of Nephrology, University Health Network, Toronto, Canada; Toronto General Research Institute, Toronto General Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada
| | - Andrew D Paterson
- Institute of Medical Sciences, University of Toronto, Toronto, Canada; The Centre for Applied Genomics, Hospital for Sick Children's, Brampton, Canada; Epidemiology & Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, Canada; Toronto General Research Institute, Toronto General Hospital, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Chiang CH, Fu YH, Horng JC. Formation of AAB-Type Collagen Heterotrimers from Designed Cationic and Aromatic Collagen-Mimetic Peptides: Evaluation of the C-Terminal Cation−π Interactions. Biomacromolecules 2017; 18:985-993. [DOI: 10.1021/acs.biomac.6b01838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chu-Harn Chiang
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Yi-Hsuan Fu
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| | - Jia-Cherng Horng
- Department of Chemistry and ‡Frontier Research Center on Fundamental and Applied
Science of Matters, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Rd., Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
12
|
Collagen structure: new tricks from a very old dog. Biochem J 2016; 473:1001-25. [PMID: 27060106 DOI: 10.1042/bj20151169] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
The main features of the triple helical structure of collagen were deduced in the mid-1950s from fibre X-ray diffraction of tendons. Yet, the resulting models only could offer an average description of the molecular conformation. A critical advance came about 20 years later with the chemical synthesis of sufficiently long and homogeneous peptides with collagen-like sequences. The availability of these collagen model peptides resulted in a large number of biochemical, crystallographic and NMR studies that have revolutionized our understanding of collagen structure. High-resolution crystal structures from collagen model peptides have provided a wealth of data on collagen conformational variability, interaction with water, collagen stability or the effects of interruptions. Furthermore, a large increase in the number of structures of collagen model peptides in complex with domains from receptors or collagen-binding proteins has shed light on the mechanisms of collagen recognition. In recent years, collagen biochemistry has escaped the boundaries of natural collagen sequences. Detailed knowledge of collagen structure has opened the field for protein engineers who have used chemical biology approaches to produce hyperstable collagens with unnatural residues, rationally designed collagen heterotrimers, self-assembling collagen peptides, etc. This review summarizes our current understanding of the structure of the collagen triple helical domain (COL×3) and gives an overview of some of the new developments in collagen molecular engineering aiming to produce novel collagen-based materials with superior properties.
Collapse
|
13
|
Nunes AM, Zhu J, Jezioro J, Minetti CASA, Remeta DP, Farndale RW, Hamaia SW, Baum J. Intrinsic local destabilization of the C-terminus predisposes integrin α1 I domain to a conformational switch induced by collagen binding. Protein Sci 2016; 25:1672-81. [PMID: 27342747 DOI: 10.1002/pro.2972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022]
Abstract
Integrin-collagen interactions play a critical role in a myriad of cellular functions that include immune response, and cell development and differentiation, yet their mechanism of binding is poorly understood. There is increasing evidence that conformational flexibility assumes a central role in the molecular mechanisms of protein-protein interactions and here we employ NMR hydrogen-deuterium exchange (HDX) experiments to explore the impact of slower timescale dynamic events. To gain insight into the mechanisms underlying collagen-induced conformational switches, we have undertaken a comparative study between the wild type integrin α1 I and a gain-of-function E317A mutant. NMR HDX results suggest a relationship between regions exhibiting a reduced local stability in the unbound I domain and those that undergo significant conformational changes upon binding. Specifically, the αC and α7 helices within the C-terminus are at the center of such major perturbations and present reduced local stabilities in the unbound state relative to other structural elements. Complementary isothermal titration calorimetry experiments have been performed to derive complete thermodynamic binding profiles for association of the collagen-like triple-helical peptide with wild type α1 I and E317A mutant. The differential energetics observed for E317A are consistent with the HDX experiments and support a model in which intrinsically destabilized regions predispose conformational rearrangement in the integrin I domain. This study highlights the importance of exploring different timescales to delineate allosteric and binding events.
Collapse
Affiliation(s)
- Ana Monica Nunes
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jie Zhu
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Jacqueline Jezioro
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| | - Conceição A S A Minetti
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - David P Remeta
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Jean Baum
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854.,Center for Integrative Proteomics Research, Rutgers University, Piscataway, New Jersey, 08854
| |
Collapse
|
14
|
Sun X, Fan J, Li X, Zhang S, Liu X, Xiao J. Colorimetric and fluorometric monitoring of the helix composition of collagen-like peptides at the nM level. Chem Commun (Camb) 2016; 52:3107-10. [PMID: 26692232 DOI: 10.1039/c5cc09565d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have demonstrated that the incorporation of a dye-labeled collagen-like peptide in the homotrimeric versus heterotrimeric context results in visible color changes and distinct fluorescence. The unique fluorescence self-quenching assay can unambiguously determine the helix composition of heterotrimers at the nM level, far extending our capability to characterize a collagen triple helix.
Collapse
Affiliation(s)
- Xiuxia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jun Fan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuan Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shanshan Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
15
|
Acevedo-Jake AM, Clements KA, Hartgerink JD. Synthetic, Register-Specific, AAB Heterotrimers to Investigate Single Point Glycine Mutations in Osteogenesis Imperfecta. Biomacromolecules 2016; 17:914-21. [DOI: 10.1021/acs.biomac.5b01562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Amanda M. Acevedo-Jake
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| | - Katherine A. Clements
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| | - Jeffrey D. Hartgerink
- Departments of Chemistry
and Bioengineering, Rice University, 6100 Main Street. Houston, Texas 77005, United States
| |
Collapse
|
16
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
17
|
Sun X, Liu S, Yu W, Wang S, Xiao J. CD and NMR investigation of collagen peptides mimicking a pathological Gly-Ser mutation and a natural interruption in a similar highly charged sequence context. Protein Sci 2015; 25:383-92. [PMID: 26457583 DOI: 10.1002/pro.2828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022]
Abstract
Even a single Gly substitution in the triple helix domain of collagen leads to pathological conditions while natural interruptions are suggested to play important functional roles. Two peptides-one mimicking a pathological Gly-Ser substitution (ERSEQ) and the other one modeling a similar natural interruption sequence (DRSER)-are designed to facilitate the comparison for elucidating the molecular basis of their different biological roles. CD and NMR investigation of peptide ERSEQ indicates a reduction of the thermal stability and disruption of hydrogen bonding at the Ser mutation site, providing a structural basis of the OI disease resulting from the Gly-Ser mutation in the highly charged RGE environment. Both CD and NMR real-time folding results indicate that peptide ERSEQ displays a comparatively slower folding rate than peptide DRSER, suggesting that the Gly-Ser mutation may lead to a larger interference in folding than the natural interruption in a similar RSE context. Our studies suggest that unlike the rigid GPO environment, the abundant R(K)GE(D) motif may provide a more flexible sequence environment that better accommodates mutations as well as interruptions, while the electrostatic interactions contribute to its stability. These results shed insight into the molecular features of the highly charged motif and may aid the design of collagen biomimetic peptides containing important biological sites.
Collapse
Affiliation(s)
- Xiuxia Sun
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Songqing Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyuan Yu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shaoru Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jianxi Xiao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
18
|
Sun X, Chai Y, Wang Q, Liu H, Wang S, Xiao J. A Natural Interruption Displays Higher Global Stability and Local Conformational Flexibility than a Similar Gly Mutation Sequence in Collagen Mimic Peptides. Biochemistry 2015; 54:6106-13. [PMID: 26352622 DOI: 10.1021/acs.biochem.5b00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural interruptions in the repeating (Gly-X-Y)n amino acid sequence pattern are found normally in triple helix domains of all nonfibrillar collagens, while any Gly substitution in fibrillar collagens leads to pathological conditions. As revealed by our sequence analysis, two peptides, one modeling a natural G5G interruption (POALO) and the other one mimicking a pathological Gly-to-Ala substitution (LOAPO), are designed. Circular dichroism (CD), NMR, and computational simulation studies have discovered significant differences in stability, conformation, and folding between the two peptides. Compared with the Gly substitution sequence, the natural interruption maintains higher stability, higher triple helix content, and a higher folding rate while introducing more alterations in local triple helical conformation in terms of dihedral angles and hydrogen bonding. The conserved hydrophobic residues at the specific sites of interruptions may provide functional constraints for higher-order assembly as well as biomolecular interactions. These results suggest a molecular basis of different biological roles of natural interruptions and Gly substitutions and may guide the design of collagen mimic peptides containing functional natural interruptions.
Collapse
Affiliation(s)
| | | | | | | | - Shaoru Wang
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P. R. China
| | | |
Collapse
|