1
|
Pérez-Martínez DE, Zenteno-Cuevas R. SNPs in genes related to the repair of damage to DNA in clinical isolates of M. tuberculosis: A transversal and longitudinal approach. PLoS One 2024; 19:e0295464. [PMID: 38917091 PMCID: PMC11198749 DOI: 10.1371/journal.pone.0295464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of SNPs in genes related to DNA damage repair in M. tuberculosis can trigger hypermutagenic phenotypes with a higher probability of generating drug resistance. The aim of this research was to compare the presence of SNPs in genes related to DNA damage repair between sensitive and DR isolates, as well as to describe the dynamics in the presence of SNPs in M. tuberculosis isolated from recently diagnosed TB patients of the state of Veracruz, Mexico. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed. Eighty-six isolates from 67 patients from central Veracruz state, Mexico, were sequenced. The results showed several SNPs in 14 genes that were only present in drug-resistant genomes. In addition, by following of 15 patients, it was possible to describe three different dynamics of appearance and evolution of non-synonymous SNPs in genes related to DNA damage repair: 1) constant fixed SNPs, 2) population substitution, and 3) gain of fixed SNPs. Further research is required to discern the biological significance of each of these pathways and their utility as markers of DR or for treatment prognosis.
Collapse
Affiliation(s)
- Damián Eduardo Pérez-Martínez
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Mexico
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City, Mexico
| |
Collapse
|
2
|
Li L, Guo B, Dai L, Liu C, Lin Z. Ebselen and TPI-1, as RecG helicase inhibitors, potently enhance the susceptibility of Pseudomonas aeruginosa to DNA damage agents. Biochem Pharmacol 2024; 222:116051. [PMID: 38354956 DOI: 10.1016/j.bcp.2024.116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Holliday junction (HJ) is a four-way structured DNA intermediate in processes of homologous recombination and DNA double-stranded break (DSB) repair. In bacteria, HJs are processed via either the RuvABC or RecG-dependent pathways. In addition, RecG also plays a critical role in the reactivation of stalled replication forks, making it an attractive target for antibacterial drug development. Here, we conducted a high-throughput screening targeting the RecG helicase from a common opportunistic pathogen Pseudomonas aeruginosa (Pa). From a library containing 7920 compounds, we identified Ebselen and TPI-1 (2',5'-Dichloro-[1,1'-biphenyl]-2,5-dione) as two potent PaRecG inhibitors, with IC50 values of 0.31 ± 0.02 μM and 1.16 ± 0.06 μM, respectively. Further biochemical analyses suggested that both Ebselen and TPI-1 inhibited the ATPase activity of PaRecG, and hindered its binding to HJ DNA with high selectivity. These compounds, when combined with our previously reported RuvAB inhibitors, resulted in more severe DNA repair defects than the individual treatment, and potently enhanced the susceptibility of P. aeruginosa to the DNA damage agents. This work reports novel small molecule inhibitors of RecG, offering valuable chemical tools for advancing our understanding of RecG's function and mechanism. Additionally, these inhibitors might be further developed as promising antibacterial agents in the fight against P. aeruginosa infections.
Collapse
Affiliation(s)
- Longheng Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Binbin Guo
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin Dai
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Pérez-Martínez DE, Bermúdez-Hernández GA, Madrazo-Moya CF, Cancino-Muñoz I, Montero H, Licona-Cassani C, Muñiz-Salazar R, Comas I, Zenteno-Cuevas R. SNPs in Genes Related to DNA Damage Repair in Mycobacterium Tuberculosis: Their Association with Type 2 Diabetes Mellitus and Drug Resistance. Genes (Basel) 2022; 13:genes13040609. [PMID: 35456415 PMCID: PMC9029044 DOI: 10.3390/genes13040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Genes related to DNA damage repair in Mycobacterium tuberculosis are critical for survival and genomic diversification. The aim of this study is to compare the presence of SNPs in genes related to DNA damage repair in sensitive and drug-resistant M. tuberculosis genomes isolated from patients with and without type 2 diabetes mellitus (T2DM). We collected 399 M. tuberculosis L4 genomes from several public repositories; 224 genomes belonging to hosts without T2DM, of which 123 (54.9%) had drug sensitive tuberculosis (TB) and 101 (45.1%) had drug resistance (DR)-TB; and 175 genomes from individuals with T2DM, of which 100 (57.1%) had drug sensitive TB and 75 (42.9%) had DR-TB. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed and compared with the resistance profile and the presence/absence of T2DM in the host. The results show the phylogenetic relationships of some SNPS and L4 sub-lineages, as well as differences in the distribution of SNPs present in DNA damage repair-related genes related to the resistance profile of the infecting strain and the presence of T2DM in the host. Given these differences, it was possible to generate two discriminant functions to distinguish between drug sensitive and drug resistant genomes, as well as patients with or without T2DM.
Collapse
Affiliation(s)
- Damián E. Pérez-Martínez
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Gustavo A. Bermúdez-Hernández
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Carlos F. Madrazo-Moya
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
| | - Irving Cancino-Muñoz
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
| | - Cuauhtemoc Licona-Cassani
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Raquel Muñiz-Salazar
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Laboratorio de Epidemiología y Ecología Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Iñaki Comas
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
4
|
Zheng J, Liu L, Wei C, Liu B, Jin Q. Characterization of O-mannosylated proteins profiling in bacillus Calmette-Guérin via gel-based and gel-free approaches. IUBMB Life 2021; 74:221-234. [PMID: 34773437 DOI: 10.1002/iub.2578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Posttranslational modifications (PTMs) could influence many aspects of protein behavior and function in organisms. Protein glycosylation is one of the major PTMs observed in bacteria, which is crucial for functional regulations of many prokaryotic and eukaryotic organisms. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been recognized as an indispensable tool in the global fight against tuberculosis (TB) worldwide over several decades. Nevertheless, analysis of glycoprotein profiles of BCG has not been clearly investigated. In this study, we performed O-mannosylated protein analysis in BCG bacteria using gel-based and gel-free approaches. In total, 1,670 hexosylated peptides derived from 754 mannosylated proteins were identified. Furthermore, 20 novel protein products supported by 78 unique peptides not annotated in the BCG database were detected. Additionally, the translational start sites of 384 proteins were confirmed, and 78 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The bioinformatic analysis of the O-mannosylated proteins was performed and the expression profiles of four randomly selected proteins were validated through Western blotting. A number of proteins involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis, oxidative phosphorylation, and two-component system, are discussed. Taken together, these results offer the first O-mannosylated protein analysis of a member of mycobacteria reported to date by using complementary gel-based and gel-free approaches. Some of the proteins identified in this study have important roles involved in metabolic pathways, which could provide insight into the immune molecular mechanisms of this recognized vaccine strain.
Collapse
Affiliation(s)
- Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Candong Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Ejaz A, Ordonez H, Jacewicz A, Ferrao R, Shuman S. Structure of mycobacterial 3'-to-5' RNA:DNA helicase Lhr bound to a ssDNA tracking strand highlights distinctive features of a novel family of bacterial helicases. Nucleic Acids Res 2019; 46:442-455. [PMID: 29165676 PMCID: PMC5758891 DOI: 10.1093/nar/gkx1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Mycobacterial Lhr is a DNA damage-inducible superfamily 2 helicase that uses adenosine triphosphate (ATP) hydrolysis to drive unidirectional 3′-to-5′ translocation along single-stranded DNA (ssDNA) and to unwind RNA:DNA duplexes en route. ATPase, translocase and helicase activities are encompassed within the N-terminal 856-amino acid segment. The crystal structure of Lhr-(1–856) in complex with AMPPNP•Mg2+ and ssDNA defines a new helicase family. The enzyme comprises two N-terminal RecA-like modules, a winged helix (WH) domain and a unique C-terminal domain. The 3′ ssDNA end binds in a crescent-shaped groove at the interface between the first RecA domain and the WH domain and tracks 5′ into a groove between the second RecA and C domains. A kissing interaction between the second RecA and C domains forms an aperture that demarcates a putative junction between the loading strand tail and the duplex, with the first duplex nucleoside bookended by stacking on Trp597. Intercalation of Ile528 between nucleosides of the loading strand creates another bookend. Coupling of ATP hydrolysis to RNA:DNA unwinding is dependent on Trp597 and Ile528, and on Thr145 and Arg279 that contact phosphates of the loading strand. The structural and functional data suggest a ratchet mechanism of translocation and unwinding coupled to ATP-driven domain movements.
Collapse
Affiliation(s)
- Anam Ejaz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather Ordonez
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agata Jacewicz
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan Ferrao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Saha T, Shukla K, Thakur RS, Desingu A, Nagaraju G. Mycobacterium tuberculosis UvrD1 and UvrD2 helicases unwind G-quadruplex DNA. FEBS J 2019; 286:2062-2086. [PMID: 30821905 DOI: 10.1111/febs.14798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/07/2019] [Accepted: 02/28/2019] [Indexed: 01/31/2023]
Abstract
Unresolved G-quadruplex (G4) DNA secondary structures impede DNA replication and can lead to DNA breaks and to genome instability. Helicases are known to unwind G4 structures and thereby facilitate genome duplication. Escherichia coli UvrD is a multifunctional helicase that participates in DNA repair, recombination and replication. Previously, we had demonstrated a novel role of E. coli UvrD helicase in resolving G4 structures. Mycobacterium tuberculosis genome encodes two orthologs of E. coli UvrD helicase, UvrD1 and UvrD2. It is unclear whether UvrD1 or UvrD2 or both helicases unwind G4 DNA structures. Here, we demonstrate that M. tuberculosis UvrD1 and UvrD2 unwind G4 tetraplexes. Both helicases were proficient in resolving previously characterized tetramolecular G4 structures in an ATP hydrolysis and single-stranded 3'-tail-dependent manner. Notably, M. tuberculosis UvrD1 and UvrD2 were efficient in unwinding G4 structures derived from the potential G4 forming sequences present in the M. tuberculosis genome. These data suggest an extended role for M. tuberculosis UvrD1 and UvrD2 helicases in resolving G4 DNA structures and provide insights into the maintenance of genome integrity via G4 DNA resolution.
Collapse
Affiliation(s)
- Tias Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kaustubh Shukla
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Ambika Desingu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Singh A, Vijayan M, Nagaraju G. RecG wed : A probable novel regulator in the resolution of branched DNA structures in mycobacteria. IUBMB Life 2018; 70:786-794. [PMID: 30240108 DOI: 10.1002/iub.1881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/31/2023]
Abstract
Structure-specific helicases, such as RecG, play an important role in the resolution of recombination intermediates. A bioinformatic analysis of mycobacterial genomes led to the identification of a protein (RecGwed ) with a C-terminal "edge" domain, similar to the wedge domain of RecG. RecGwed is predominately found in the phylum Actinobacteria and in few human pathogens. Mycobacterium smegmatis RecGwed was able to bind branched DNA structures in vitro but failed to interact with single- or double-stranded DNA. The expression of recGwed in M. smegmatis cells was up-regulated during stationary phase/UV damage and down-regulated during MMS/H2 O2 treatment. These observations indicate the possible involvement of RecGwed in transactions during recombination events, that proceed though branched DNA intermediates. © 2018 IUBMB Life, 70(8):786-794, 2018.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures. Biochem J 2017; 474:3579-3597. [PMID: 28916651 DOI: 10.1042/bcj20170587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel role of E. coli and Neisseria gonorrhoeae UvrD in resolving G4 tetraplexes. EcUvrD and Ngonorrhoeae UvrD were proficient in unwinding previously characterized tetramolecular G4 structures. Notably, EcUvrD was equally efficient in resolving tetramolecular and bimolecular G4 DNA that were derived from the potential G4-forming sequences from the genome of E. coli Interestingly, in addition to resolving intermolecular G4 structures, EcUvrD was robust in unwinding intramolecular G4 structures. These data for the first time provide evidence for the role of UvrD in the resolution of G4 structures, which has implications for the in vivo role of UvrD helicase in G4 DNA resolution and genome maintenance.
Collapse
|
9
|
Azeroglu B, Leach DRF. RecG controls DNA amplification at double-strand breaks and arrested replication forks. FEBS Lett 2017; 591:1101-1113. [PMID: 28155219 PMCID: PMC5412681 DOI: 10.1002/1873-3468.12583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 12/16/2022]
Abstract
DNA amplification is a powerful mutational mechanism that is a hallmark of cancer and drug resistance. It is therefore important to understand the fundamental pathways that cells employ to avoid over‐replicating sections of their genomes. Recent studies demonstrate that, in the absence of RecG, DNA amplification is observed at sites of DNA double‐strand break repair (DSBR) and of DNA replication arrest that are processed to generate double‐strand ends. RecG also plays a role in stabilising joint molecules formed during DSBR. We propose that RecG prevents a previously unrecognised mechanism of DNA amplification that we call reverse‐restart, which generates DNA double‐strand ends from incorrect loading of the replicative helicase at D‐loops formed by recombination, and at arrested replication forks.
Collapse
Affiliation(s)
- Benura Azeroglu
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
10
|
Gaidutšik I, Sedman T, Sillamaa S, Sedman J. Irc3 is a mitochondrial DNA branch migration enzyme. Sci Rep 2016; 6:26414. [PMID: 27194389 PMCID: PMC4872236 DOI: 10.1038/srep26414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/03/2016] [Indexed: 01/03/2023] Open
Abstract
Integrity of mitochondrial DNA (mtDNA) is essential for cellular energy metabolism. In the budding yeast Saccharomyces cerevisiae, a large number of nuclear genes influence the stability of mitochondrial genome; however, most corresponding gene products act indirectly and the actual molecular mechanisms of mtDNA inheritance remain poorly characterized. Recently, we found that a Superfamily II helicase Irc3 is required for the maintenance of mitochondrial genome integrity. Here we show that Irc3 is a mitochondrial DNA branch migration enzyme. Irc3 modulates mtDNA metabolic intermediates by preferential binding and unwinding Holliday junctions and replication fork structures. Furthermore, we demonstrate that the loss of Irc3 can be complemented with mitochondrially targeted RecG of Escherichia coli. We suggest that Irc3 could support the stability of mtDNA by stimulating fork regression and branch migration or by inhibiting the formation of irregular branched molecules.
Collapse
Affiliation(s)
- Ilja Gaidutšik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Tiina Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Sirelin Sillamaa
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| | - Juhan Sedman
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, Tartu 51010, Estonia
| |
Collapse
|
11
|
Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016; 62:827-840. [PMID: 27038615 PMCID: PMC5055574 DOI: 10.1007/s00294-016-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched substrates in vitro. Although initially associated with homologous recombination and DNA repair, studies of cells lacking RecG over the past 25 years have led to the suggestion that the protein might be multi-functional and associated with a number of additional cellular processes, including initiation of origin-independent DNA replication, the rescue of stalled or damaged replication forks, replication restart, stationary phase or stress-induced 'adaptive' mutations and most recently, naïve adaptation in CRISPR-Cas immunity. Here we discuss the possibility that many of the phenotypes of recG mutant cells that have led to this conclusion may stem from a single defect, namely the failure to prevent re-replication of the chromosome. We also present data indicating that this failure does indeed contribute substantially to the much-reduced recovery of recombinants in conjugational crosses with strains lacking both RecG and the RuvABC Holliday junction resolvase.
Collapse
Affiliation(s)
- Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|