1
|
Witek W, Imiolczyk B, Ruszkowski M. Structural, kinetic, and evolutionary peculiarities of HISN3, a plant 5'-ProFAR isomerase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109065. [PMID: 39186852 DOI: 10.1016/j.plaphy.2024.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Histidine biosynthesis is essential for the growth and development of plants, where it occurs within chloroplasts. The eleven reactions are catalyzed by eight enzymes, known as HISN1-8, each acting sequentially. Here, we present the crystal structures of a 5'-ProFAR isomerase (HISN3) from the model legume Medicago truncatula bound to its enzymatically synthesized substrate (ProFAR) and product (PrFAR). The active site of MtHISN3 contains a sodium cation that participates in ligand recognition, a feature not observed in bacterial and fungal structures of homologous enzymes. The steady-state kinetics of wild-type MtHISN3 revealed a slightly higher turnover rate compared to its bacterial homologs. Plant HISN3 sequences contain an unusually elongated Lys60-Ser91 fragment, while deletion of the 74-80 region resulted in a 30-fold loss in catalytic efficiency compared to the wild-type. Molecular dynamics simulations suggested that the fragment facilitates product release, thereby contributing to a higher kcat. Moreover, conservation analyses suggested a non-cyanobacterial origin for plant HISN3 enzymes, which is another instance of a non-cyanobacterial enzyme in the plant histidine biosynthetic pathway. Finally, a virtual screening campaign yielded five molecules, with the energy gains ranging between -13.6 and -13.1 kcal/mol, which provide new scaffolds for the future development of herbicides.
Collapse
Affiliation(s)
- Wojciech Witek
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Barbara Imiolczyk
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
2
|
Hupfeld E, Schlee S, Wurm JP, Rajendran C, Yehorova D, Vos E, Ravindra Raju D, Kamerlin SCL, Sprangers R, Sterner R. Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα) 8-Barrel Enzyme of Histidine Biosynthesis HisF. JACS AU 2024; 4:3258-3276. [PMID: 39211614 PMCID: PMC11350729 DOI: 10.1021/jacsau.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The overall significance of loop motions for enzymatic activity is generally accepted. However, it has largely remained unclear whether and how such motions can control different steps of catalysis. We have studied this problem on the example of the mobile active site β1α1-loop (loop1) of the (βα)8-barrel enzyme HisF, which is the cyclase subunit of imidazole glycerol phosphate synthase. Loop1 variants containing single mutations of conserved amino acids showed drastically reduced rates for the turnover of the substrates N'-[(5'-phosphoribulosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PrFAR) and ammonia to the products imidazole glycerol phosphate (ImGP) and 5-aminoimidazole-4-carboxamide-ribotide (AICAR). A comprehensive mechanistic analysis including stopped-flow kinetics, X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations detected three conformations of loop1 (open, detached, closed) whose populations differed between wild-type HisF and functionally affected loop1 variants. Transient stopped-flow kinetic experiments demonstrated that wt-HisF binds PrFAR by an induced-fit mechanism whereas catalytically impaired loop1 variants bind PrFAR by a simple two-state mechanism. Our findings suggest that PrFAR-induced formation of the closed conformation of loop1 brings active site residues in a productive orientation for chemical turnover, which we show to be the rate-limiting step of HisF catalysis. After the cyclase reaction, the closed loop conformation is destabilized, which favors the formation of detached and open conformations and hence facilitates the release of the products ImGP and AICAR. Our data demonstrate how different conformations of active site loops contribute to different catalytic steps, a finding that is presumably of broad relevance for the reaction mechanisms of (βα)8-barrel enzymes and beyond.
Collapse
Affiliation(s)
- Enrico Hupfeld
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Sandra Schlee
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jan Philip Wurm
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Chitra Rajendran
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dariia Yehorova
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Eva Vos
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Dinesh Ravindra Raju
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Shina Caroline Lynn Kamerlin
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30318, United States
| | - Remco Sprangers
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Reinhard Sterner
- Institute
of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Banach M. Structural Outlier Detection and Zernike-Canterakis Moments for Molecular Surface Meshes-Fast Implementation in Python. Molecules 2023; 29:52. [PMID: 38202635 PMCID: PMC10779519 DOI: 10.3390/molecules29010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Object retrieval systems measure the degree of similarity of the shape of 3D models. They search for the elements of the 3D model databases that resemble the query model. In structural bioinformatics, the query model is a protein tertiary/quaternary structure and the objective is to find similarly shaped molecules in the Protein Data Bank. With the ever-growing size of the PDB, a direct atomic coordinate comparison with all its members is impractical. To overcome this problem, the shape of the molecules can be encoded by fixed-length feature vectors. The distance of a protein to the entire PDB can be measured in this low-dimensional domain in linear time. The state-of-the-art approaches utilize Zernike-Canterakis moments for the shape encoding and supply the retrieval process with geometric data of the input structures. The BioZernike descriptors are a standard utility of the PDB since 2020. However, when trying to calculate the ZC moments locally, the issue of the deficiency of libraries readily available for use in custom programs (i.e., without relying on external binaries) is encountered, in particular programs written in Python. Here, a fast and well-documented Python implementation of the Pozo-Koehl algorithm is presented. In contrast to the more popular algorithm by Novotni and Klein, which is based on the voxelized volume, the PK algorithm produces ZC moments directly from the triangular surface meshes of 3D models. In particular, it can accept the molecular surfaces of proteins as its input. In the presented PK-Zernike library, owing to Numba's just-in-time compilation, a mesh with 50,000 facets is processed by a single thread in a second at the moment order 20. Since this is the first time the PK algorithm is used in structural bioinformatics, it is employed in a novel, simple, but efficient protein structure retrieval pipeline. The elimination of the outlying chain fragments via a fast PCA-based subroutine improves the discrimination ability, allowing for this pipeline to achieve an 0.961 area under the ROC curve in the BioZernike validation suite (0.997 for the assemblies). The correlation between the results of the proposed approach and of the 3D Surfer program attains values up to 0.99.
Collapse
Affiliation(s)
- Mateusz Banach
- Department of Bioinformatics and Telemedicine, Faculty of Medicine, Jagiellonian University Medical College, Medyczna 7, 30-688 Kraków, Poland
| |
Collapse
|
4
|
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nat Rev Chem 2023; 7:536-547. [PMID: 37225920 DOI: 10.1038/s41570-023-00495-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 05/26/2023]
Abstract
In the early 2000s, Tawfik presented his 'New View' on enzyme evolution, highlighting the role of conformational plasticity in expanding the functional diversity of limited repertoires of sequences. This view is gaining increasing traction with increasing evidence of the importance of conformational dynamics in both natural and laboratory evolution of enzymes. The past years have seen several elegant examples of harnessing conformational (particularly loop) dynamics to successfully manipulate protein function. This Review revisits flexible loops as critical participants in regulating enzyme activity. We showcase several systems of particular interest: triosephosphate isomerase barrel proteins, protein tyrosine phosphatases and β-lactamases, while briefly discussing other systems in which loop dynamics are important for selectivity and turnover. We then discuss the implications for engineering, presenting examples of successful loop manipulation in either improving catalytic efficiency, or changing selectivity completely. Overall, it is becoming clearer that mimicking nature by manipulating the conformational dynamics of key protein loops is a powerful method of tailoring enzyme activity, without needing to target active-site residues.
Collapse
Affiliation(s)
- Marina Corbella
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Gaspar P Pinto
- Department of Chemistry, Uppsala University, Uppsala, Sweden
- Cortex Discovery GmbH, Regensburg, Germany
| | - Shina C L Kamerlin
- Department of Chemistry, Uppsala University, Uppsala, Sweden.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Romero-Rivera A, Corbella M, Parracino A, Patrick WM, Kamerlin SCL. Complex Loop Dynamics Underpin Activity, Specificity, and Evolvability in the (βα) 8 Barrel Enzymes of Histidine and Tryptophan Biosynthesis. JACS AU 2022; 2:943-960. [PMID: 35557756 PMCID: PMC9088769 DOI: 10.1021/jacsau.2c00063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 05/16/2023]
Abstract
Enzymes are conformationally dynamic, and their dynamical properties play an important role in regulating their specificity and evolvability. In this context, substantial attention has been paid to the role of ligand-gated conformational changes in enzyme catalysis; however, such studies have focused on tremendously proficient enzymes such as triosephosphate isomerase and orotidine 5'-monophosphate decarboxylase, where the rapid (μs timescale) motion of a single loop dominates the transition between catalytically inactive and active conformations. In contrast, the (βα)8-barrels of tryptophan and histidine biosynthesis, such as the specialist isomerase enzymes HisA and TrpF, and the bifunctional isomerase PriA, are decorated by multiple long loops that undergo conformational transitions on the ms (or slower) timescale. Studying the interdependent motions of multiple slow loops, and their role in catalysis, poses a significant computational challenge. This work combines conventional and enhanced molecular dynamics simulations with empirical valence bond simulations to provide rich details of the conformational behavior of the catalytic loops in HisA, PriA, and TrpF, and the role of their plasticity in facilitating bifunctionality in PriA and evolved HisA variants. In addition, we demonstrate that, similar to other enzymes activated by ligand-gated conformational changes, loops 3 and 4 of HisA and PriA act as gripper loops, facilitating the isomerization of the large bulky substrate ProFAR, albeit now on much slower timescales. This hints at convergent evolution on these different (βα)8-barrel scaffolds. Finally, our work reemphasizes the potential of engineering loop dynamics as a tool to artificially manipulate the catalytic repertoire of TIM-barrel proteins.
Collapse
Affiliation(s)
- Adrian Romero-Rivera
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Marina Corbella
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department
of Chemistry—BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, 6012 Wellington, New Zealand
| | | |
Collapse
|
6
|
Dubey KD, Singh W. Simulations reveal the key role of Arg15 in the promiscuous activity in the HisA enzyme. Org Biomol Chem 2021; 19:10652-10661. [PMID: 34854451 DOI: 10.1039/d1ob02029c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HisA enzyme catalyzes the first step of histidine biosynthesis via the Amadori rearrangement of the substrate ProFAR. Since it possesses the most conserved and ancient TIM-barrel fold, it provides an ideal framework for bioengineering of a new function from ancestral enzymes. In the present study, first, the catalytic mechanism of HisA biosynthesis was elucidated using hybrid Quantum Mechanical/Molecular Mechanical calculations, and thereafter, key residues contributing towards the promiscuity for TrpF activity were revealed using several MD simulations of a wild type enzyme and its variant with the native (ProFAR) and promiscuous (PRA) substrates. Our study reveals that the two loops (βα)1 and (βα)5 on the catalytic site of the HisA enzyme have incredible adaptability for the native and promiscuous substrates. The conformational interplay between these two loops is substrate driven and precise bioengineering targeting these loops is key to the emergence of new functions. Furthermore, the study reveals a key role of the Arg 15 residue which is close to the catalytic center of the enzyme in the bifunctionality of the HisA enzyme by increasing the loop flexibility. Therefore, our study provides crucial information for future bioengineering work to use the HisA enzyme as a scaffold for new enzymatic activity.
Collapse
Affiliation(s)
- Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh-201314, India.
| | - Warispreet Singh
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,Hub for Biotechnology in Build Environment, Newcastle upon Tyne, NE1 8ST, UK
| |
Collapse
|
7
|
Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J 2021; 287:1262-1283. [PMID: 32250558 DOI: 10.1111/febs.15299] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Thousands of new metabolic and regulatory enzymes have evolved by gene duplication and divergence since the dawn of life. New enzyme activities often originate from promiscuous secondary activities that have become important for fitness due to a change in the environment or a mutation. Mutations that make a promiscuous activity physiologically relevant can occur in the gene encoding the promiscuous enzyme itself, but can also occur elsewhere, resulting in increased expression of the enzyme or decreased competition between the native and novel substrates for the active site. If a newly useful activity is inefficient, gene duplication/amplification will set the stage for divergence of a new enzyme. Even a few mutations can increase the efficiency of a new activity by orders of magnitude. As efficiency increases, amplified gene arrays will shrink to provide two alleles, one encoding the original enzyme and one encoding the new enzyme. Ultimately, genomic rearrangements eliminate co-amplified genes and move newly evolved paralogs to a distant region of the genome.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
8
|
Lundin E, Näsvall J, Andersson DI. Mutational Pathways and Trade-Offs Between HisA and TrpF Functions: Implications for Evolution via Gene Duplication and Divergence. Front Microbiol 2020; 11:588235. [PMID: 33154742 PMCID: PMC7591586 DOI: 10.3389/fmicb.2020.588235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
When a new activity evolves by changes in a pre-existing enzyme this is likely to reduce the original activity, generating a functional trade-off. The properties of this trade-off will affect the continued evolution of both functions. If the trade-off is strong, gene duplication and subsequent divergence would be favored whereas if the trade-off is weak a bi-functional enzyme could evolve that performs both functions. We previously showed that when a bi-functional HisA enzyme was evolved under selection for both HisA and TrpF functions, evolution mainly proceeded via duplication-divergence and specialization, implying that the trade-off is strong between these two functions. Here, we examined this hypothesis by identifying the mutational pathways (i.e., the mutational landscape) in the Salmonella enterica HisA enzyme that conferred a TrpF-like activity, and examining the trade-offs between the original and new activity. For the HisA enzyme there are many different paths toward the new TrpF function, each with its own unique trade-off. A total of 16 single mutations resulted in HisA enzyme variants that acquired TrpF activity and only three of them maintained HisA activity. Twelve mutants were evolved further toward increased TrpF activity and during evolution toward improved TrpF activity the original HisA activity was completely lost in all lineages. We propose that, aside from various relevant ecological factors, two main genetic factors influence whether evolution of a new function proceeds via duplication – divergence (specialization) or by evolution of a generalist: (i) the relative mutation supply of the two pathways and (ii) the shape of the trade-off curve between the native and new function.
Collapse
Affiliation(s)
- Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
10
|
Wang Y, Zhang F, Nie Y, Shang G, Zhang H. Structural analysis of Shigella flexneri bi-functional enzyme HisIE in histidine biosynthesis. Biochem Biophys Res Commun 2019; 516:540-545. [PMID: 31235255 DOI: 10.1016/j.bbrc.2019.06.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022]
Abstract
Histidine biosynthesis, which is absent in animals, was shown to be highly conserved among gram-negative bacteria, thus making it an attractive target for antibiotic design. There are many fusion forms of enzymes in the histidine biosynthetic pathway and people still have limited knowledge about their domain organizations and catalytic mechanisms, due to the lack of structural information. Here we report the first crystal structure of Shigella flexneri bi-functional enzyme HisIE (SfHisIE) that functions in the 2nd and 3rd steps in the histidine biosynthetic pathway. This structure shows that HisIE exists as dimers with two loops (fusion loop) connecting the individual dimer of HisE and HisI in its N-terminus and C-terminus respectively. Our mutagenesis study shows mutations in this fusion loop are lethal for bacteria indicating the advantage of gene fusion in Histidine biosynthesis. Structural analysis revealed several highly conserved residues in the putative ligand binding grooves of HisE and HisI, showing an evolutionarily conserved catalytic mechanism shared among gram negative-bacteria.
Collapse
Affiliation(s)
- Yannan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Fan Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| | - Guijun Shang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.
| | - Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
| |
Collapse
|
11
|
Lundin E, Tang PC, Guy L, Näsvall J, Andersson DI. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA. Mol Biol Evol 2018; 35:704-718. [PMID: 29294020 PMCID: PMC5850734 DOI: 10.1093/molbev/msx325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients.
Collapse
Affiliation(s)
- Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Structural and functional innovations in the real-time evolution of new (βα) 8 barrel enzymes. Proc Natl Acad Sci U S A 2017; 114:4727-4732. [PMID: 28416687 DOI: 10.1073/pnas.1618552114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
New genes can arise by duplication and divergence, but there is a fundamental gap in our understanding of the relationship between these genes, the evolving proteins they encode, and the fitness of the organism. Here we used crystallography, NMR dynamics, kinetics, and mass spectrometry to explain the molecular innovations that arose during a previous real-time evolution experiment. In that experiment, the (βα)8 barrel enzyme HisA was under selection for two functions (HisA and TrpF), resulting in duplication and divergence of the hisA gene to encode TrpF specialists, HisA specialists, and bifunctional generalists. We found that selection affects enzyme structure and dynamics, and thus substrate preference, simultaneously and sequentially. Bifunctionality is associated with two distinct sets of loop conformations, each essential for one function. We observed two mechanisms for functional specialization: structural stabilization of each loop conformation and substrate-specific adaptation of the active site. Intracellular enzyme performance, calculated as the product of catalytic efficiency and relative expression level, was not linearly related to fitness. Instead, we observed thresholds for each activity above which further improvements in catalytic efficiency had little if any effect on growth rate. Overall, we have shown how beneficial substitutions selected during real-time evolution can lead to manifold changes in enzyme function and bacterial fitness. This work emphasizes the speed at which adaptive evolution can yield enzymes with sufficiently high activities such that they no longer limit the growth of their host organism, and confirms the (βα)8 barrel as an inherently evolvable protein scaffold.
Collapse
|
13
|
Hojnik C, Müller A, Gloe TE, Lindhorst TK, Wrodnigg TM. The Amadori Rearrangement for Carbohydrate Conjugation: Scope and Limitations. European J Org Chem 2016; 2016:4328-4337. [PMID: 27840588 PMCID: PMC5094532 DOI: 10.1002/ejoc.201600458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/05/2022]
Abstract
The Amadori rearrangement was investigated for the synthesis of C-glycosyl-type neoglycoconjugates. Various amines including diamines, amino-functionalized glycosides, lysine derivatives, and peptides were conjugated with two different heptoses to generate non-natural C-glycosyl-type glycoconjugates of the d-gluco and d-manno series. With these studies, the scope and limitations of the Amadori rearrangement as a conjugation method have been exemplified with respect to the carbohydrate substrate, as well as the amino components.
Collapse
Affiliation(s)
- Cornelia Hojnik
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| | - Anne Müller
- Otto Diels Institute of Organic Chemistry Christiana Albertina University of Kiel Otto-Hahn-Platz 24118 Kiel Germany
| | - Tobias-Elias Gloe
- Otto Diels Institute of Organic Chemistry Christiana Albertina University of Kiel Otto-Hahn-Platz 24118 Kiel Germany
| | - Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry Christiana Albertina University of Kiel Otto-Hahn-Platz 24118 Kiel Germany
| | - Tanja M Wrodnigg
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
14
|
Co-occurrence of analogous enzymes determines evolution of a novel (βα)8-isomerase sub-family after non-conserved mutations in flexible loop. Biochem J 2016; 473:1141-52. [PMID: 26929404 DOI: 10.1042/bj20151271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
We investigate the evolution of co-occurring analogous enzymes involved in L-tryptophan and L-histidine biosynthesis in Actinobacteria Phylogenetic analysis of trpF homologues, a missing gene in certain clades of this lineage whose absence is complemented by a dual-substrate HisA homologue, termed PriA, found that they fall into three categories: (i) trpF-1, an L-tryptophan biosynthetic gene horizontally acquired by certain Corynebacterium species; (ii) trpF-2, a paralogue known to be involved in synthesizing a pyrrolopyrrole moiety and (iii) trpF-3, a variable non-conserved orthologue of trpF-1 We previously investigated the effect of trpF-1 upon the evolution of PriA substrate specificity, but nothing is known about the relationship between trpF-3 and priA After in vitro steady-state enzyme kinetics we found that trpF-3 encodes a phosphoribosyl anthranilate isomerase. However, mutation of this gene in Streptomyces sviceus did not lead to auxothrophy, as expected from the biosynthetic role of trpF-1 Biochemical characterization of a dozen co-occurring TrpF-2 or TrpF-3, with PriA homologues, explained the prototrophic phenotype, and unveiled an enzyme activity trade-off between TrpF and PriA. X-ray structural analysis suggests that the function of these PriA homologues is mediated by non-conserved mutations in the flexible L5 loop, which may be responsible for different substrate affinities. Thus, the PriA homologues that co-occur with TrpF-3 represent a novel enzyme family, termed PriB, which evolved in response to PRA isomerase activity. The characterization of co-occurring enzymes provides insights into the influence of functional redundancy on the evolution of enzyme function, which could be useful for enzyme functional annotation.
Collapse
|
15
|
Plach MG, Reisinger B, Sterner R, Merkl R. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation. PLoS Genet 2016; 12:e1005836. [PMID: 26824644 PMCID: PMC4732765 DOI: 10.1371/journal.pgen.1005836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/09/2016] [Indexed: 01/10/2023] Open
Abstract
Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans. The term exaptation describes the process by which a trait that is initially just a by-product of another function may become important in a later evolutionary phase. For example, feathers served to insulate dinosaurs before helping birds fly. On the level of enzymes, bi-functionality can contribute to microbial evolution through exaptation. However, bi-functional enzymes may cause metabolic conflicts, if they are involved in different metabolic pathways. By characterizing properties of modern and computationally reconstructed ancestral variants of the sugar isomerase HisA, we demonstrate that it has been a bi-functional enzyme for the last two billion years. Most likely, bi-functionality persisted because the remaining TrpF activity is not harmful or its elimination would concurrently compromise HisA activity. Moreover, this substrate ambiguity is advantageous, as it allows compensating a gene loss as exemplified by the Actinobacteria. These microbes have lost the isomerase TrpF but possess the bi-functional HisA homolog PriA, which takes over the roles of both HisA and TrpF. Our results argue to view bi-functionality not as an evolutionary disadvantage but rather as a contribution to the evolvability of novel functions via exaptation.
Collapse
Affiliation(s)
- Maximilian G. Plach
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Bernd Reisinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (RS); (RM)
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
- * E-mail: (RS); (RM)
| |
Collapse
|