1
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Guan Y, Mei J, Gao X, Wang C, Jia M, Ahmad S, Muhammad FN, Ai H. Prediction of the 3D conformation of a small peptide vaccine targeting Aβ42 oligomers. Phys Chem Chem Phys 2024; 26:20087-20102. [PMID: 39007924 DOI: 10.1039/d4cp02078b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The original etiology of Alzheimer's disease (AD) is the deposition of amyloid-beta (Aβ) proteins, which starts from the aggregation of the Aβ oligomers. The optimal therapeutic strategy targeting Aβ oligomer aggregation is the development of AD vaccines. Despite the fact that positive progress has been made for experimental attempts at AD vaccines, the physicochemical and even structural properties of these AD vaccines remain unclear. In this study, through immunoinformatic and molecular dynamics (MD) simulations, we first designed and simulated an alternative of vaccine TAPAS and found that the structure of the alternative can reproduce the 3D conformation of TAPAS determined experimentally. Meanwhile, immunoinformatic methods were used to analyze the physicochemical properties of TAPAS, including immunogenicity, antigenicity, thermal stability, and solubility, which confirm well the efficacy and safety of the vaccine, and validate the scheme reliability of immunoinformatic and MD simulations in designing and simulating the TAPAS vaccine. Using the same scheme, we predicted the 3D conformation of the optimized ACI-24 peptide vaccine, an Aβ peptide with the first 15 residues of Aβ42 (Aβ1-15). The vaccine was verified once to be effective against both full-length Aβ1-42 and truncated Aβ4-42 aggregates, but an experimental 3D structure was absent. We have also explored the immune mechanism of the vaccine at the molecular level and found that the optimized ACI-24 and its analogues can block the growth of either full-length Aβ1-42 or truncated Aβ4-42 pentamer by contacting the hydrophobic residues within the N-terminus and β1 region on the contact surface of either pentamer. Additionally, residues (D1, D7, S8, H13, and Q15) were identified as the key residues of the vaccine to contact either of the two Aβ oligomers. This work provides a feasible implementation scheme of immunoinformatic and MD simulations for the development of AD small peptide vaccines, validating the power of the scheme as a parallel tool to the experimental approaches and injecting molecular-level information into the understanding and design of anti-AD vaccines.
Collapse
Affiliation(s)
- Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Fahad Nouman Muhammad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
3
|
Wang Y, Wang Z, Guo S, Li Q, Kong Y, Sui A, Ma J, Lu L, Zhao J, Li S. SVHRSP Alleviates Age-Related Cognitive Deficiency by Reducing Oxidative Stress and Neuroinflammation. Antioxidants (Basel) 2024; 13:628. [PMID: 38929067 PMCID: PMC11200511 DOI: 10.3390/antiox13060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Our previous studies have shown that scorpion venom heat-resistant synthesized peptide (SVHRSP) induces a significant extension in lifespan and improvements in age-related physiological functions in worms. However, the mechanism underlying the potential anti-aging effects of SVHRSP in mammals remains elusive. METHODS Following SVHRSP treatment in senescence-accelerated mouse resistant 1 (SAMR1) or senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests were conducted and brain tissues were collected for morphological analysis, electrophysiology experiments, flow cytometry, and protein or gene expression. The human neuroblastoma cell line (SH-SY5Y) was subjected to H2O2 treatment in cell experiments, aiming to establish a cytotoxic model that mimics cellular senescence. This model was utilized to investigate the regulatory mechanisms underlying oxidative stress and neuroinflammation associated with age-related cognitive impairment mediated by SVHRSP. RESULTS SVHRSP significantly ameliorated age-related cognitive decline, enhanced long-term potentiation, restored synaptic loss, and upregulated the expression of synaptic proteins, therefore indicating an improvement in synaptic plasticity. Moreover, SVHRSP demonstrated a decline in senescent markers, including SA-β-gal enzyme activity, P16, P21, SIRT1, and cell cycle arrest. The underlying mechanisms involve an upregulation of antioxidant enzyme activity and a reduction in oxidative stress-induced damage. Furthermore, SVHRSP regulated the nucleoplasmic distribution of NRF2 through the SIRT1-P53 pathway. Further investigation indicated a reduction in the expression of proinflammatory factors in the brain after SVHRSP treatment. SVHRSP attenuated neuroinflammation by regulating the NF-κB nucleoplasmic distribution and inhibiting microglial and astrocytic activation through the SIRT1-NF-κB pathway. Additionally, SVHRSP significantly augmented Nissl body count while suppressing neuronal loss. CONCLUSION SVHRSP could remarkably improve cognitive deficiency by inhibiting oxidative stress and neuroinflammation, thus representing an effective strategy to improve brain health.
Collapse
Affiliation(s)
- Yingzi Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- Department of International Medical Services, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Zhenhua Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Songyu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Qifa Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Aoran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
| | - Jianmei Ma
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China;
| | - Li Lu
- Department of Anatomy, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian 116044, China; (Y.W.); (Z.W.); (S.G.); (Q.L.); (Y.K.); (A.S.)
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Sarabia-Vallejo Á, López-Alvarado P, Menéndez JC. Small-molecule theranostics in Alzheimer's disease. Eur J Med Chem 2023; 255:115382. [PMID: 37141706 DOI: 10.1016/j.ejmech.2023.115382] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Alzheimer's Disease (AD) remains one of the most challenging health-related issues for our society. It is becoming increasingly prevalent, especially in developed countries, due to the rising life expectancy and, moreover, represents a considerable economic burden worldwide. All efforts at the discovery of new diagnostic and therapeutic tools in the last decades have invariably met with failure, making AD an incurable illness and underscoring the need for new approaches. In recent years, theranostic agents have emerged as an interesting strategy. They are molecules able to simultaneously provide diagnostic information and deliver therapeutic activity, allowing for the assessment of the molecule activity, the organism response and the pharmacokinetics. This makes these compounds promising for streamlining research on AD drugs and for their application in personalized medicine. We review here the field of small-molecule theranostic agents as promising tools for the development of novel diagnostic and therapeutic resources against AD, highlighting the positive and significant impact that theranostics can be expected to have in the near future in clinical practice.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Young KA, Mancera RL. Review: Investigating the aggregation of amyloid beta with surface plasmon resonance: Do different approaches yield different results? Anal Biochem 2022; 654:114828. [PMID: 35931183 DOI: 10.1016/j.ab.2022.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Aggregation of amyloid beta into amyloid plaques in the brain is a hallmark characteristic of Alzheimer's disease. Therapeutics aimed at preventing or retarding amyloid formation often rely on detailed characterization of the underlying mechanism and kinetics of protein aggregation. Surface plasmon resonance (SPR) spectroscopy is a robust technique used to determine binding affinity and kinetics of biomolecular interactions. This approach has been used to characterize the mechanism of aggregation of amyloid beta but there are multiple pitfalls that need to be addressed when working with this and other amyloidogenic proteins. The choice of method for analyte preparation and ligand immobilization to a sensor chip can lead to different theoretical and practical implications in terms of the mathematical modelling of binding data, different mechanisms of binding and the presence of different interacting species. This review examines preparation methods for SPR characterisation of the aggregation of amyloid beta and their influence on the findings derived from such studies.
Collapse
Affiliation(s)
- Kimberly A Young
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
6
|
Mamsa SSA, Meloni BP. Arginine and Arginine-Rich Peptides as Modulators of Protein Aggregation and Cytotoxicity Associated With Alzheimer's Disease. Front Mol Neurosci 2021; 14:759729. [PMID: 34776866 PMCID: PMC8581540 DOI: 10.3389/fnmol.2021.759729] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/10/2023] Open
Abstract
A substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins. The putative role of proteopathies in chronic neurodegenerative diseases such as Alzheimer's disease (AD) warrants investigation into whether CARPs could also prevent the aggregation and cytotoxicity of amyloidogenic proteins, particularly amyloid-beta and tau. While monomeric arginine is well-established as an inhibitor of protein aggregation in solution, no studies have comprehensively discussed the anti-aggregatory properties of arginine and CARPs on proteins associated with neurodegenerative disease. Here, we review the structural, physicochemical, and self-associative properties of arginine and the guanidinium moiety, to explore the mechanisms underlying the modulation of protein aggregation by monomeric and multimeric arginine molecules. Arginine-rich peptide-based inhibitors of amyloid-beta and tau aggregation are discussed, as well as further modulatory roles which could reduce proteopathic cytotoxicity, in the context of therapeutic development for AD.
Collapse
Affiliation(s)
- Somayra S A Mamsa
- School of Molecular Sciences, Faculty of Science, The University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Perth, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Perth, WA, Australia
| |
Collapse
|
7
|
Sosa AFC, de Olivera da Silva SM, Morgan GP, Schwartz DK, Kaar JL. Mixed Phospholipid Vesicles Catalytically Inhibit and Reverse Amyloid Fibril Formation. J Phys Chem Lett 2020; 11:7417-7422. [PMID: 32803986 PMCID: PMC10164471 DOI: 10.1021/acs.jpclett.0c02074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
While many approaches to reduce fibrillation of amyloid-β (Aβ) have been aimed at slowing fibril formation, the degradation of fibrils remains challenging. We provide insight into fibril degradation as well as the inhibition of fiber formation by lipid vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol). In the presence of vesicles with the optimal lipid composition, fibril formation was inhibited up to 76%. Additionally, by tuning the lipid composition, mature fibril content decreased up to 74% and the β-sheet content of Aβ was significantly reduced. The reduction in fibril and β-sheet content was consistent with a decrease in fibril diameter and could be attributed to the chaperone-like activity of the mixed vesicles. While demonstrating this remarkable activity, our findings present new evidence that lipid composition has a significant effect on the strength of the interaction between lipid bilayers and Aβ peptides/fibrils. This understanding has intriguing therapeutic implications in treating protein misfolding diseases.
Collapse
Affiliation(s)
- Andres F. Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
| | | | - Garry P. Morgan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- Corresponding Authors: Daniel K. Schwartz, University of Colorado Boulder, Department of Chemical and Biological Engineering, Campus Box 596, Boulder, CO 80309, Tel: (303) 735-0240, Fax: (303) 492-4341, ; Joel L. Kaar, University of Colorado Boulder, Department of Chemical and Biological Engineering, Campus Box 596, Boulder, CO 80309, Tel: (303) 492-6031, Fax: (303) 492-4341,
| | - Joel L. Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309
- Corresponding Authors: Daniel K. Schwartz, University of Colorado Boulder, Department of Chemical and Biological Engineering, Campus Box 596, Boulder, CO 80309, Tel: (303) 735-0240, Fax: (303) 492-4341, ; Joel L. Kaar, University of Colorado Boulder, Department of Chemical and Biological Engineering, Campus Box 596, Boulder, CO 80309, Tel: (303) 492-6031, Fax: (303) 492-4341,
| |
Collapse
|
8
|
Zhang X, Zhong M, Zhao P, Zhang X, Li Y, Wang X, Sun J, Lan W, Sun H, Wang Z, Gao H. Screening a specific Zn(ii)-binding peptide for improving the cognitive decline of Alzheimer's disease in APP/PS1 transgenic mice by inhibiting Zn 2+-mediated amyloid protein aggregation and neurotoxicity. Biomater Sci 2020; 7:5197-5210. [PMID: 31588929 DOI: 10.1039/c9bm00676a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zn2+ has been implicated in the progression of Alzheimer's disease (AD), as amyloid-β protein (Aβ) aggregation and neurotoxicity are mediated by zinc ions. Therefore, development of metal chelators for inhibiting and regulating metal-triggered Aβ aggregation has received attention as a strategy for treating AD. Here, we used an approach based on phage display to screen for a Zn(ii)-binding peptide that specifically blocks Zn-triggered Aβ aggregation. A fixed Zn(ii) resin was prepared using Ni-IDA affinity resin, and the target Zn(ii) was screened by interaction with a heptapeptide phage library. After negative biopanning against IDA and four rounds of positive biopanning against Zn(ii), high specificity Zn(ii)-binding phages were obtained. Through DNA sequencing and ELISA, 15 sets of Zn(ii)-binding peptides with high histidine contents were identified. We chose a highly specific peptide against Zn(ii) with the sequence of H-M-Q-T-N-H-H, and its abilities to chelate Zn2+ and inhibit Zn2+-mediated Aβ aggregation were assessed in vitro. We loaded the Zn(ii)-binding peptide onto PEG-modified chitosan nanoparticles (NPs) to improve the stability and the bioavailability of the Zn(ii) binding peptide. PEG-modified chitosan NPs loaded with Zn(ii)-binding peptide (PEG/PZn-CS NPs) reduced Zn2+ concentrations and Aβ secretion in mouse neuroblastoma (N)2a cells stably over-expressing the APP Swedish mutation (N2aswe). Zn2+-Induced neurotoxicity, oxidative stress, and apoptosis were attenuated by PEG/PZn-CS NPs. Intranasal administration of PEG/PZn-CS NPs improved the cognitive ability of APPswe/PS1d9 (APP/PS1) double-transgenic mice and reduced Aβ plaques in the mouse brain. This study indicated that a Zn(ii)-binding peptide and its NPs have promise as a potential anti-AD agent.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Specific keratinase derived designer peptides potently inhibit Aβ aggregation resulting in reduced neuronal toxicity and apoptosis. Biochem J 2019; 476:1817-1841. [DOI: 10.1042/bcj20190183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Compelling evidence implicates self-assembly of amyloid-β (Aβ1–42) peptides into soluble oligomers and fibrils as a major underlying event in Alzheimer's disease (AD) pathogenesis. Herein, we employed amyloid-degrading keratinase (kerA) enzyme as a key Aβ1–42-binding scaffold to identify five keratinase-guided peptides (KgPs) capable of interacting with and altering amyloidogenic conversion of Aβ1–42. The KgPs showed micromolar affinities with Aβ1–42 and abolished its sigmoidal amyloidogenic transition, resulting in abrogation of fibrillogenesis. Comprehensive assessment using dynamic light scattering (DLS), atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy showed that KgPs induced the formation of off-pathway oligomers comparatively larger than the native Aβ1–42 oligomers but with a significantly reduced cross-β signature. These off-pathway oligomers exhibited low immunoreactivity against oligomer-specific (A11) and fibril-specific (OC) antibodies and rescued neuronal cells from Aβ1–42 oligomer toxicity as well as neuronal apoptosis. Structural analysis using molecular docking and molecular dynamics (MD) simulations showed two preferred KgP binding sites (Lys16–Phe20 and Leu28–Val39) on the NMR ensembles of monomeric and fibrillar Aβ1–42, indicating an interruption of crucial hydrophobic and aromatic interactions. Overall, our results demonstrate a new approach for designing potential anti-amyloid molecules that could pave way for developing effective therapeutics against AD and other amyloid diseases.
Collapse
|
10
|
Effect of Varying Concentrations of Docosahexaenoic Acid on Amyloid Beta (1⁻42) Aggregation: An Atomic Force Microscopy Study. Molecules 2018; 23:molecules23123089. [PMID: 30486385 PMCID: PMC6321163 DOI: 10.3390/molecules23123089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
Healthcare has advanced significantly, bringing with it longer life expectancies and a growing population of elders who suffer from dementia, specifically Alzheimer’s disease (AD). The amyloid beta (Aβ) peptide has been implicated in the cause of AD, where the peptides undergo a conformational change and form neurotoxic amyloid oligomers which cause neuronal cell death. While AD has no cure, preventative measures are being designed to either slow down or stop the progression of this neurodegenerative disease. One of these measures involves dietary supplements with polyunsaturated fatty acids such as docosahexaenoic acid (DHA). This omega-3 fatty acid is a key component of brain development and has been suggested to reduce the progression of cognitive decline. However, different studies have yielded different results as to whether DHA has positive, negative, or no effects on Aβ fibril formation. We believe that these discrepancies can be explained with varying concentrations of DHA. Here, we test the inhibitory effect of different concentrations of DHA on amyloid fibril formation using atomic force microscopy. Our results show that DHA has a strong inhibitory effect on Aβ1–42 fibril formation at lower concentrations (50% reduction in fibril length) than higher concentrations above its critical micelle concentration (70% increase in fibril length and three times the length of those at lower concentrations). We provide evidence that various concentrations of DHA can play a role in the inhibitory effects of amyloid fibril formation in vitro and help explain the discrepancies observed in previous studies.
Collapse
|
11
|
Ryan P, Patel B, Makwana V, Jadhav HR, Kiefel M, Davey A, Reekie TA, Rudrawar S, Kassiou M. Peptides, Peptidomimetics, and Carbohydrate-Peptide Conjugates as Amyloidogenic Aggregation Inhibitors for Alzheimer's Disease. ACS Chem Neurosci 2018; 9:1530-1551. [PMID: 29782794 DOI: 10.1021/acschemneuro.8b00185] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder accounting for 60-80% of dementia cases. For many years, AD causality was attributed to amyloid-β (Aβ) aggregated species. Recently, multiple therapies that target Aβ aggregation have failed in clinical trials, since Aβ aggregation is found in AD and healthy patients. Attention has therefore shifted toward the aggregation of the tau protein as a major driver of AD. Numerous inhibitors of tau-based pathology have recently been developed. Diagnosis of AD has shifted from measuring late stage senile plaques to early stage biomarkers, amyloid-β and tau monomers and oligomeric assemblies. Synthetic peptides and some derivative structures are being explored for use as theranostic tools as they possess the capacity both to bind the biomarkers and to inhibit their pathological self-assembly. Several studies have demonstrated that O-linked glycoside addition can significantly alter amyloid aggregation kinetics. Furthermore, natural O-glycosylation of amyloid-forming proteins, including amyloid precursor protein (APP), tau, and α-synuclein, promotes alternative nonamyloidogenic processing pathways. As such, glycopeptides and related peptidomimetics are being investigated within the AD field. Here we review advancements made in the last 5 years, as well as the arrival of sugar-based derivatives.
Collapse
Affiliation(s)
- Philip Ryan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Bhautikkumar Patel
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
| | - Hemant R. Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani-333031, Rajasthan, India
| | - Milton Kiefel
- Institute for Glycomics, Griffith University, Gold Coast 4222, Australia
| | - Andrew Davey
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
| | | | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast 4222, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
De Lorenzi E, Chiari M, Colombo R, Cretich M, Sola L, Vanna R, Gagni P, Bisceglia F, Morasso C, Lin JS, Lee M, McGeer PL, Barron AE. Evidence that the Human Innate Immune Peptide LL-37 may be a Binding Partner of Amyloid-β and Inhibitor of Fibril Assembly. J Alzheimers Dis 2018; 59:1213-1226. [PMID: 28731438 PMCID: PMC5611894 DOI: 10.3233/jad-170223] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Identifying physiologically relevant binding partners of amyloid-β (Aβ) that modulate in vivo fibril formation may yield new insights into Alzheimer's disease (AD) etiology. Human cathelicidin peptide, LL-37, is an innate immune effector and modulator, ubiquitous in human tissues and expressed in myriad cell types. OBJECTIVE We present in vitro experimental evidence and discuss findings supporting a novel hypothesis that LL-37 binds to Aβ42 and can modulate Aβ fibril formation. METHODS Specific interactions between LL-37 and Aβ (with Aβ in different aggregation states, assessed by capillary electrophoresis) were demonstrated by surface plasmon resonance imaging (SPRi). Morphological and structural changes were investigated by transmission electron microscopy (TEM) and circular dichroism (CD) spectroscopy. Neuroinflammatory and cytotoxic effects of LL-37 alone, Aβ42 alone, and LL-37/Aβ complexes were evaluated in human microglia and neuroblastoma cell lines (SH-SY5Y). RESULTS SPRi shows binding specificity between LL-37 and Aβ, while TEM shows that LL-37 inhibits Aβ42 fibril formation, particularly Aβ's ability to form long, straight fibrils characteristic of AD. CD reveals that LL-37 prevents Aβ42 from adopting its typical β-type secondary structure. Microglia-mediated toxicities of LL-37 and Aβ42 to neurons are greatly attenuated when the two peptides are co-incubated prior to addition. We discuss the complementary biophysical characteristics and AD-related biological activities of these two peptides. CONCLUSION Based on this body of evidence, we propose that LL-37 and Aβ42 may be natural binding partners, which implies that balanced (or unbalanced) spatiotemporal expression of the two peptides could impact AD initiation and progression.
Collapse
Affiliation(s)
| | - Marcella Chiari
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Marina Cretich
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Laura Sola
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Renzo Vanna
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Paola Gagni
- National Research Council of Italy, Institute of Chemistry of Molecular Recognition, Milan, Italy
| | | | - Carlo Morasso
- Laboratory of Nanomedicine and Clinical Biophotonics (LABION), Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Jennifer S Lin
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| | - Moonhee Lee
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Elaskalani O, Khan I, Morici M, Matthysen C, Sabale M, Martins RN, Verdile G, Metharom P. Oligomeric and fibrillar amyloid beta 42 induce platelet aggregation partially through GPVI. Platelets 2017; 29:415-420. [PMID: 29206067 DOI: 10.1080/09537104.2017.1401057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of the Alzheimer's disease (AD)-associated Amyloid-β (Aβ) peptides on platelet aggregation have been previously assessed, but most of these studies focused on Aβ40 species. It also remains to be determined which distinct forms of Aβ peptides exert differential effects on platelets. In AD, oligomeric Aβ42 species is widely thought to be a major contributor to the disease pathogenesis. We, therefore, examine the ability of oligomeric and fibrillary Aβ42 to affect platelet aggregation. We show that both forms of Aβ42 induced significant platelet aggregation and that it is a novel ligand for the platelet receptor GPVI. Furthermore, a novel binding peptide that reduces the formation of soluble Aβ42 oligomers was effective at preventing Aβ42-dependent platelet aggregation. These results support a role for Aβ42 oligomers in platelet hyperactivity.
Collapse
Affiliation(s)
- O Elaskalani
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - I Khan
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Morici
- b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia
| | - C Matthysen
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - M Sabale
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - R N Martins
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,c Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , NSW , Sydney , Australia
| | - G Verdile
- a School of Biomedical Sciences, Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia.,b School of Medical Sciences , Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University , Joondalup , WA , Australia.,d School of Psychiatry and Clinical Neurosciences , University of WA , Perth , Australia
| | - P Metharom
- e Faculty of Health Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|
14
|
Arbor S. Targeting amyloid precursor protein shuttling and processing - long before amyloid beta formation. Neural Regen Res 2017; 12:207-209. [PMID: 28400797 PMCID: PMC5361499 DOI: 10.4103/1673-5374.200800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sage Arbor
- Department of Biomedical Sciences, Marian University College of Medicine, Indianapolis, IN, USA
| |
Collapse
|
15
|
Li H, Rahimi F, Bitan G. Modulation of Amyloid β-Protein (Aβ) Assembly by Homologous C-Terminal Fragments as a Strategy for Inhibiting Aβ Toxicity. ACS Chem Neurosci 2016; 7:845-56. [PMID: 27322435 DOI: 10.1021/acschemneuro.6b00154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Self-assembly of amyloid β-protein (Aβ) into neurotoxic oligomers and fibrillar aggregates is a key process thought to be the proximal event leading to development of Alzheimer's disease (AD). Therefore, numerous attempts have been made to develop reagents that disrupt this process and prevent the formation of the toxic oligomers and aggregates. An attractive strategy for developing such reagents is to use peptides derived from Aβ based on the assumption that such peptides would bind to full-length Aβ, interfere with binding of additional full-length molecules, and thereby prevent formation of the toxic species. Guided by this rationale, most of the studies in the last two decades have focused on preventing formation of the core cross-β structure of Aβ amyloid fibrils using β-sheet-breaker peptides derived from the central hydrophobic cluster of Aβ. Though this approach is effective in inhibiting fibril formation, it is generally inefficient in preventing Aβ oligomerization. An alternative approach is to use peptides derived from the C-terminus of Aβ, which mediates both oligomerization and fibrillogenesis. This approach has been explored by several groups, including our own, and led to the discovery of several lead peptides with moderate to high inhibitory activity. Interestingly, the mechanisms of these inhibitory effects have been found to be diverse, and only in a small percentage of cases involved interference with β-sheet formation. Here, we review the strategy of using C-terminal fragments of Aβ as modulators of Aβ assembly and discuss the relevant challenges, therapeutic potential, and mechanisms of action of such fragments.
Collapse
Affiliation(s)
- Huiyuan Li
- West Virginia University, Morgantown, West Virginia 26506, United States
| | - Farid Rahimi
- Biomedical
Science and Biochemistry, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Gal Bitan
- Department
of Neurology, David Geffen School of Medicine, Brain Research Institute,
and Molecular Biology Institute, University of California at Los Angeles, Neuroscience Research Building 1, Room 451 635 Charles E. Young Drive
South, Los Angeles, California 90095-7334, United States
| |
Collapse
|