1
|
van den Dolder FW, Dinani R, Warnaar VAJ, Vučković S, Passadouro AS, Nassar AA, Ramsaroep AX, Burchell GB, Schoonmade LJ, van der Velden J, Goversen B. Experimental Models of Hypertrophic Cardiomyopathy: A Systematic Review. JACC Basic Transl Sci 2025; 10:511-546. [PMID: 40306862 DOI: 10.1016/j.jacbts.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025]
Abstract
To advance research in hypertrophic cardiomyopathy (HCM), and guide researchers in choosing the optimal model to answer their research questions, we performed a systematic review of all models investigating HCM induced by gene variants ranging from animal models to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our research question entailed: which experimental models of HCM have been created thus far, and which major hallmarks of HCM do they present? Out of the 603 included papers, the majority included animal models, though a clear transition to hiPSC-CM is visible since 2010. Our review showed that only 36 mouse models showed minimal 4 out of 6 HCM disease markers (cell/cardiac hypertrophy, disarray, fibrosis, diastolic dysfunction, and arrhythmias), while only 17 hiPSC-CM models showed 3 out of 4 HCM cell characteristics. Our review emphasizes the need to better report data on sample size, sex, age, and relevant disease-specific characteristics.
Collapse
Affiliation(s)
- Floor W van den Dolder
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Rafeeh Dinani
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Vincent A J Warnaar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Sofija Vučković
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Adriana S Passadouro
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, the Netherlands
| | - Ali A Nassar
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| | - Azhaar X Ramsaroep
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands
| | - George B Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Linda J Schoonmade
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands.
| | - Birgit Goversen
- Department of Physiology, Amsterdam University Medical Center (UMC), Location VUmc, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Chakraborti A, Tardiff JC, Schwartz SD. Myosin-Catalyzed ATP Hydrolysis in the Presence of Disease-Causing Mutations: Mavacamten as a Way to Repair Mechanism. J Phys Chem B 2024; 128:4716-4727. [PMID: 38708944 PMCID: PMC11103257 DOI: 10.1021/acs.jpcb.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Hypertrophic cardiomyopathy is one of the most common forms of genetic cardiomyopathy. Mavacamten is a first-in-class myosin modulator that was identified via activity screening on the wild type, and it is FDA-approved for the treatment of obstructive hypertrophic cardiomyopathy (HCM). The drug selectively binds to the cardiac β-myosin, inhibiting myosin function to decrease cardiac contractility. Though the drug is thought to affect multiple steps of the myosin cross-bridge cycle, its detailed mechanism of action is still under investigation. Individual steps in the overall cross-bridge cycle must be queried to elucidate the full mechanism of action. In this study, we utilize the rare-event method of transition path sampling to generate reactive trajectories to gain insights into the action of the drug on the dynamics and rate of the ATP hydrolysis step for human cardiac β-myosin. We study three known HCM causative myosin mutations: R453C, P710R, and R712L to observe the effect of the drug on the alterations caused by these mutations in the chemical step. Since the crystal structure of the drug-bound myosin was not available at the time of this work, we created a model of the drug-bound system utilizing a molecular docking approach. We find a significant effect of the drug in one case, where the actual mechanism of the reaction is altered from the wild type by mutation. The drug restores both the rate of hydrolysis to the wildtype level and the mechanism of the reaction. This is a way to check the effect of the drug on untested mutations.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
3
|
Chakraborti A, Tardiff JC, Schwartz SD. Insights into the Mechanism of the Cardiac Drug Omecamtiv Mecarbil─A Computational Study. J Phys Chem B 2022; 126:10069-10082. [PMID: 36448224 PMCID: PMC9830884 DOI: 10.1021/acs.jpcb.2c06679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Omecamtiv mecarbil (OM) is a positive inotrope that is thought to bind directly to an allosteric site of the β-cardiac myosin. The drug is under investigation for the treatment of systolic heart failure. The drug is classified as a cardiac myosin modulator and has been observed to affect multiple vital steps of the cross-bridge cycle including the recovery stroke and the chemical step. We explored the free-energy surface of the recovery stroke of the human cardiac β-myosin in the presence of OM to determine its influence on this process. We also investigated the effects of OM on the recovery stroke in the presence of genetic cardiomyopathic mutations R712L, F764L, and P710R using metadynamics. We also utilized the method of transition path sampling to generate an unbiased ensemble of reactive trajectories for the ATP hydrolysis step in the presence of OM that were able to provide insight into the differences observed due to OM in the dynamics and mechanism of the decomposition of ATP to ADP and HPO42-, a central part of the power generation in cardiac muscle. We studied chemistry in the presence of the same three mutations to further elucidate the effect of OM, and its use in the treatment of cardiac disease.
Collapse
Affiliation(s)
- Ananya Chakraborti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85724, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Ušaj M, Moretto L, Månsson A. Critical Evaluation of Current Hypotheses for the Pathogenesis of Hypertrophic Cardiomyopathy. Int J Mol Sci 2022; 23:2195. [PMID: 35216312 PMCID: PMC8880276 DOI: 10.3390/ijms23042195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hereditary hypertrophic cardiomyopathy (HCM), due to mutations in sarcomere proteins, occurs in more than 1/500 individuals and is the leading cause of sudden cardiac death in young people. The clinical course exhibits appreciable variability. However, typically, heart morphology and function are normal at birth, with pathological remodeling developing over years to decades, leading to a phenotype characterized by asymmetric ventricular hypertrophy, scattered fibrosis and myofibrillar/cellular disarray with ultimate mechanical heart failure and/or severe arrhythmias. The identity of the primary mutation-induced changes in sarcomere function and how they trigger debilitating remodeling are poorly understood. Support for the importance of mutation-induced hypercontractility, e.g., increased calcium sensitivity and/or increased power output, has been strengthened in recent years. However, other ideas that mutation-induced hypocontractility or non-uniformities with contractile instabilities, instead, constitute primary triggers cannot yet be discarded. Here, we review evidence for and criticism against the mentioned hypotheses. In this process, we find support for previous ideas that inefficient energy usage and a blunted Frank-Starling mechanism have central roles in pathogenesis, although presumably representing effects secondary to the primary mutation-induced changes. While first trying to reconcile apparently diverging evidence for the different hypotheses in one unified model, we also identify key remaining questions and suggest how experimental systems that are built around isolated primarily expressed proteins could be useful.
Collapse
Affiliation(s)
| | | | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-39182 Kalmar, Sweden; (M.U.); (L.M.)
| |
Collapse
|
5
|
Snoberger A, Barua B, Atherton JL, Shuman H, Forgacs E, Goldman YE, Winkelmann DA, Ostap EM. Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. eLife 2021; 10:63691. [PMID: 33605878 PMCID: PMC7895523 DOI: 10.7554/elife.63691] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/31/2021] [Indexed: 01/10/2023] Open
Abstract
Hypertrophic cardiomyopathies (HCMs) are the leading cause of acute cardiac failure in young individuals. Over 300 mutations throughout β-cardiac myosin, including in the motor domain, are associated with HCM. A β-cardiac myosin motor mutation (R712L) leads to a severe form of HCM. Actin-gliding motility of R712L-myosin is inhibited, despite near-normal ATPase kinetics. By optical trapping, the working stroke of R712L-myosin was decreased 4-fold, but actin-attachment durations were normal. A prevalent hypothesis that HCM mutants are hypercontractile is thus not universal. R712 is adjacent to the binding site of the heart failure drug omecamtiv mecarbil (OM). OM suppresses the working stroke of normal β-cardiac myosin, but remarkably, OM rescues the R712L-myosin working stroke. Using a flow chamber to interrogate a single molecule during buffer exchange, we found OM rescue to be reversible. Thus, the R712L mutation uncouples lever arm rotation from ATPase activity and this inhibition is rescued by OM.
Collapse
Affiliation(s)
- Aaron Snoberger
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - Jennifer L Atherton
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Henry Shuman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eva Forgacs
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, United States
| | - Yale E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Donald A Winkelmann
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, United States
| | - E Michael Ostap
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
6
|
Guo Y, Kronert WA, Hsu KH, Huang A, Sarsoza F, Bell KM, Suggs JA, Swank DM, Bernstein SI. Drosophila myosin mutants model the disparate severity of type 1 and type 2B distal arthrogryposis and indicate an enhanced actin affinity mechanism. Skelet Muscle 2020; 10:24. [PMID: 32799913 PMCID: PMC7429702 DOI: 10.1186/s13395-020-00241-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/28/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Distal arthrogryposis (DA) is a group of autosomal dominant skeletal muscle diseases characterized by congenital contractures of distal limb joints. The most common cause of DA is a mutation of the embryonic myosin heavy chain gene, MYH3. Human phenotypes of DA are divided into the weakest form-DA1, a moderately severe form-DA2B (Sheldon-Hall Syndrome), and a severe DA disorder-DA2A (Freeman-Sheldon Syndrome). As models of DA1 and DA2B do not exist, their disease mechanisms are poorly understood. METHODS We produced the first models of myosin-based DA1 (F437I) and DA2B (A234T) using transgenic Drosophila melanogaster and performed an integrative analysis of the effects of the mutations. Assessments included lifespan, locomotion, ultrastructural analysis, muscle mechanics, ATPase activity, in vitro motility, and protein modeling. RESULTS We observed significant defects in DA1 and DA2B Drosophila flight and jump ability, as well as myofibril assembly and stability, with homozygotes displaying more severe phenotypes than heterozygotes. Notably, DA2B flies showed dramatically stronger phenotypic defects compared to DA1 flies, mirroring the human condition. Mechanical studies of indirect flight muscle fibers from DA1 heterozygotes revealed reduced power output along with increased stiffness and force production, compared to wild-type controls. Further, isolated DA1 myosin showed significantly reduced myosin ATPase activity and in vitro actin filament motility. These data in conjunction with our sinusoidal analysis of fibers suggest prolonged myosin binding to actin and a slowed step associated with Pi release and/or the power stroke. Our results are supported by molecular modeling studies, which indicate that the F437I and A234T mutations affect specific amino acid residue interactions within the myosin motor domain that may alter interaction with actin and nucleotide. CONCLUSIONS The allele-specific ultrastructural and locomotory defects in our Drosophila DA1 and DA2B models are concordant with the differential severity of the human diseases. Further, the mechanical and biochemical defects engendered by the DA1 mutation reveal that power production, fiber stiffness, and nucleotide handling are aberrant in F437I muscle and myosin. The defects observed in our DA1 and DA2B Drosophila models provide insight into DA phenotypes in humans, suggesting that contractures arise from prolonged actomyosin interactions.
Collapse
Affiliation(s)
- Yiming Guo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Karen H Hsu
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Alice Huang
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Floyd Sarsoza
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Kaylyn M Bell
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Douglas M Swank
- Department of Biological Sciences & Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, CA, 92182-4614, USA.
| |
Collapse
|
7
|
Kronert WA, Bell KM, Viswanathan MC, Melkani GC, Trujillo AS, Huang A, Melkani A, Cammarato A, Swank DM, Bernstein SI. Prolonged cross-bridge binding triggers muscle dysfunction in a Drosophila model of myosin-based hypertrophic cardiomyopathy. eLife 2018; 7:38064. [PMID: 30102150 PMCID: PMC6141233 DOI: 10.7554/elife.38064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments. Myosin is a motor protein that drives the contraction of muscles. Filaments made from myosin molecules slide between filaments of another protein called actin, tugging the edges of the muscle cell inwards. To achieve this, part of each motor protein – called the 'head' – grabs hold of actin and uses energy to pull on the filaments. Small genetic mutations in the gene for myosin can change the shape of the protein. This can change the way that it interacts with actin, altering the molecular machinery that makes muscles contract. In some cases, gene errors can cause the heart muscle wall to thicken, a condition called hypertrophic cardiomyopathy. Mapping the locations of known mutations revealed 'hot spots' on the myosin protein where these errors are likely to cause disease. These include the part of the molecule that swings the myosin heads, and the heads themselves. It only takes a change to a single letter in the DNA code to thicken the heart wall, but the impact of each possible change is not yet known. Kronert et al. have now genetically modified fruit flies to give them one of the mutations that causes thickening of the heart wall in humans. The mutation, known as K146N, does not appear in one of the well-known 'hot spots'. The experiments revealed that the mutation causes myosin to remain attached to actin for longer than normal. This increased the amount of force the myosin generated, but slowed down actin movement, causing muscle stiffness. This resulted in less power for every cycle of muscle movement, and caused the muscles to degenerate over time. As a result, the flies were less able to use their wings, and their hearts pumped less well. Hypertrophic cardiomyopathy can cause death in young adults, particularly competitive athletes. Yet studying the disease in humans is challenging. Recreating myosin mutations in fruit flies provides a way to study hypertrophic cardiomyopathy in the laboratory. In the future, extensions to this technique could allow researchers to examine the impact of other mutations. Models like this one could also allow early testing of new drugs or genetic treatments to repair faulty myosin molecules.
Collapse
Affiliation(s)
- William A Kronert
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Kaylyn M Bell
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Girish C Melkani
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Adriana S Trujillo
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Alice Huang
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States
| | - Anju Melkani
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, United States
| | - Douglas M Swank
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, United States.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, New York, United States
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute and Heart Institute, San Diego State University, San Diego, United States
| |
Collapse
|
8
|
Chinthalapudi K, Heissler SM, Preller M, Sellers JR, Manstein DJ. Mechanistic insights into the active site and allosteric communication pathways in human nonmuscle myosin-2C. eLife 2017; 6:32742. [PMID: 29256864 PMCID: PMC5749951 DOI: 10.7554/elife.32742] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/18/2017] [Indexed: 01/10/2023] Open
Abstract
Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å pre-powerstroke state (ADP⋅VO4) crystal structure of the human nonmuscle myosin-2C motor domain, one of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble-solution kinetics, and molecular dynamics simulation approaches, the structure reveals an allosteric communication pathway that connects the distal end of the motor domain with the active site. Disruption of this pathway by mutation of hub residue R788, which forms the center of a cluster of interactions connecting the converter, the SH1-SH2 helix, the relay helix, and the lever, abolishes nonmuscle myosin-2 specific kinetic signatures. Our results provide insights into structural changes in the myosin motor domain that are triggered upon F-actin binding and contribute critically to the mechanochemical behavior of stress fibers, actin arcs, and cortical actin-based structures.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany.,Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, United States
| | - Sarah M Heissler
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Matthias Preller
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Centre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), Hamburg, Germany
| | - James R Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, United States
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Hannover Medical School, Hannover, Germany.,Division for Structural Biochemistry, OE8830, Hannover Medical School, Hannover, Germany
| |
Collapse
|