1
|
Wang S, Gong Y, Wang Z, Greenbaum J, Xiao HM, Deng HW. Cell-specific network analysis of human folliculogenesis reveals network rewiring in antral stage oocytes. J Cell Mol Med 2021; 25:2851-2860. [PMID: 33599396 PMCID: PMC7957178 DOI: 10.1111/jcmm.16315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Although previous studies have explored the gene expression profiles of human oocytes and granulosa cells by single-cell RNA sequencing (scRNA-seq), the dynamic regulatory network at a single-cell resolution during folliculogenesis remains largely unknown. We identified 10 functional modules by WGCNA, four of which were significantly correlated with primary/antral oocyte and antral/pre-ovulatory granulosa cells. Functional enrichment analysis showed that the brown module, which was correlated with antral oocyte, was enriched in oocyte differentiation, and two core subnetworks identified by MCODE were involved in cell cycle (blue subnetwork) and oogenesis (red subnetwork). The cell-specific network (CSN) analysis demonstrated a distinct gene network structure associated with the antral follicular stage, which was notably different from other developmental stages. To our knowledge, this is the first study to explore gene functions during folliculogenesis at single-cell network level. We uncovered two potential gene subnetworks, which may play an important role in oocyte function beginning at the antral stage, and further established their rewiring process at intra-network/whole transcriptome level. The findings provide crucial insights from a novel network perspective to be further explored in functional mechanistic studies.
Collapse
Affiliation(s)
- Shengran Wang
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha, China
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Mei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China.,Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Fang D, Lengronne A, Shi D, Forey R, Skrzypczak M, Ginalski K, Yan C, Wang X, Cao Q, Pasero P, Lou H. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes Dev 2018; 31:2405-2415. [PMID: 29330352 PMCID: PMC5795786 DOI: 10.1101/gad.306571.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
Abstract
Fang et al. show that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. Initiation of eukaryotic chromosome replication follows a spatiotemporal program. The current model suggests that replication origins compete for a limited pool of initiation factors. However, it remains to be answered how these limiting factors are preferentially recruited to early origins. Here, we report that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. This interaction is mediated by the Dbf4 C terminus and was successfully reconstituted in vitro. An interaction-defective mutant, dbf4ΔC, phenocopies fkh alleles in terms of origin firing. Remarkably, genome-wide replication profiles reveal that the direct fusion of the DNA-binding domain (DBD) of Fkh1 to Dbf4 restores the Fkh-dependent origin firing but interferes specifically with the pericentromeric origin activation. Furthermore, Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. These data suggest that Fkh1 targets Dbf4 to a subset of noncentromeric origins to promote early replication in a manner that is reminiscent of the recruitment of Dbf4 to pericentromeric origins by Ctf19.
Collapse
Affiliation(s)
- Dingqiang Fang
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Armelle Lengronne
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Di Shi
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Romain Forey
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Xiaoke Wang
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Philippe Pasero
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Perez-Arnaiz P, Bruck I, Colbert MK, Kaplan DL. An intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly and the recruitment of Pol-α to Mcm2-7. Nucleic Acids Res 2017; 45:7261-7275. [PMID: 28510759 PMCID: PMC5499591 DOI: 10.1093/nar/gkx438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Mcm10 is an essential eukaryotic factor required for DNA replication. The replication fork helicase is composed of Cdc45, Mcm2–7 and GINS (CMG). DDK is an S-phase-specific kinase required for replication initiation, and the DNA primase-polymerase in eukaryotes is pol α. Mcm10 forms oligomers in vitro, mediated by the coiled-coil domain at the N-terminal region of the protein. We characterized an Mcm10 mutant at the N-terminal Domain (NTD), Mcm10-4A, defective for self-interaction. We found that the Mcm10-4A mutant was defective for stimulating DDK phosphorylation of Mcm2, binding to eighty-nucleotide ssDNA, and recruiting pol α to Mcm2–7 in vitro. Expression of wild-type levels of mcm10-4A resulted in severe growth and DNA replication defects in budding yeast cells, with diminished DDK phosphorylation of Mcm2. We then expressed the mcm10-4A in mcm5-bob1 mutant cells to bypass the defects mediated by diminished stimulation of DDK phosphorylation of Mcm2. Expression of wild-type levels of mcm10-4A in mcm5-bob1 mutant cells resulted in severe growth and DNA replication defects, along with diminished RPA signal at replication origins. We also detected diminished GINS and pol-α recruitment to the Mcm2–7 complex. We conclude that an intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly, and the recruitment of pol α to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Max K Colbert
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Charrasse S, Gharbi-Ayachi A, Burgess A, Vera J, Hached K, Raynaud P, Schwob E, Lorca T, Castro A. Ensa controls S-phase length by modulating Treslin levels. Nat Commun 2017; 8:206. [PMID: 28785014 PMCID: PMC5547116 DOI: 10.1038/s41467-017-00339-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
The Greatwall/Ensa/PP2A-B55 pathway is essential for controlling mitotic substrate phosphorylation and mitotic entry. Here, we investigate the effect of the knockdown of the Gwl substrate, Ensa, in human cells. Unexpectedly, Ensa knockdown promotes a dramatic extension of S phase associated with a lowered density of replication forks. Notably, Ensa depletion results in a decrease of Treslin levels, a pivotal protein for the firing of replication origins. Accordingly, the extended S phase in Ensa-depleted cells is completely rescued by the overexpression of Treslin. Our data herein reveal a new mechanism by which normal cells regulate S-phase duration by controlling the ubiquitin-proteasome degradation of Treslin in a Gwl/Ensa-dependent pathway. The Greatwall/Ensa/PP2A-B55 pathway controls mitotic substrate phosphorylation and mitotic entry. Here the authors show that cells regulate S phase duration by controlling the ubiquitin-proteasome degradation of Treslin in a Gwl/Ensa-dependent pathway.
Collapse
Affiliation(s)
- Sophie Charrasse
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Aicha Gharbi-Ayachi
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Jorge Vera
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Khaled Hached
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Peggy Raynaud
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR 5535, University of Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Thierry Lorca
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
| | - Anna Castro
- Université de Montpellier, Centre de Recherche de Biologie Cellulaire de Montpellier, Equipe Labellisée 'Ligue Contre le Cancer', CNRS UMR 5237, 1919 Route de Mende, 34293, Montpellier cedex 5, France.
| |
Collapse
|
5
|
Bruck I, Dhingra N, Martinez MP, Kaplan DL. Dpb11 may function with RPA and DNA to initiate DNA replication. PLoS One 2017; 12:e0177147. [PMID: 28467467 PMCID: PMC5415106 DOI: 10.1371/journal.pone.0177147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023] Open
Abstract
Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.
Collapse
Affiliation(s)
- Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Nalini Dhingra
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Matthew P. Martinez
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
| | - Daniel L. Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
7
|
Bruck I, Dhingra N, Kaplan DL. A Positive Amplification Mechanism Involving a Kinase and Replication Initiation Factor Helps Assemble the Replication Fork Helicase. J Biol Chem 2017; 292:3062-3073. [PMID: 28082681 DOI: 10.1074/jbc.m116.772368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (GG-Ichi-Nii-San) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Nalini Dhingra
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
8
|
Origin DNA Melting-An Essential Process with Divergent Mechanisms. Genes (Basel) 2017; 8:genes8010026. [PMID: 28085061 PMCID: PMC5295021 DOI: 10.3390/genes8010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Origin DNA melting is an essential process in the various domains of life. The replication fork helicase unwinds DNA ahead of the replication fork, providing single-stranded DNA templates for the replicative polymerases. The replication fork helicase is a ring shaped-assembly that unwinds DNA by a steric exclusion mechanism in most DNA replication systems. While one strand of DNA passes through the central channel of the helicase ring, the second DNA strand is excluded from the central channel. Thus, the origin, or initiation site for DNA replication, must melt during the initiation of DNA replication to allow for the helicase to surround a single-DNA strand. While this process is largely understood for bacteria and eukaryotic viruses, less is known about how origin DNA is melted at eukaryotic cellular origins. This review describes the current state of knowledge of how genomic DNA is melted at a replication origin in bacteria and eukaryotes. We propose that although the process of origin melting is essential for the various domains of life, the mechanism for origin melting may be quite different among the different DNA replication initiation systems.
Collapse
|
9
|
Fang D, Cao Q, Lou H. Sld3-MCM Interaction Facilitated by Dbf4-Dependent Kinase Defines an Essential Step in Eukaryotic DNA Replication Initiation. Front Microbiol 2016; 7:885. [PMID: 27375603 PMCID: PMC4901202 DOI: 10.3389/fmicb.2016.00885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022] Open
Abstract
Sld3/Treslin is an evolutionarily conserved protein essential for activation of DNA helicase Mcm2-7 and replication initiation in all eukaryotes. Nevertheless, it remains elusive how Sld3 is recruited to origins. Here, we have identified the direct physical association of Sld3 with Mcm2 and Mcm6 subunits in vitro, which is significantly enhanced by DDK in vivo. The Sld3-binding domain (SBD) is mapped to the N-termini of Mcm2 and Mcm6, both of them are essential for cell viability and enriched with the DDK phosphorylation sites. Glutamic acid substitution of four conserved positively charged residues of Sld3 (sld3-4E), near the Cdc45-binding region, interrupts its interaction with Mcm2/6 and causes cell death. By using a temperature-inducible degron (td), we show that deletion of Mcm6 SBD (mcm6ΔN122) abolishes not only Sld3 enrichment at early origins in G1 phase, but also subsequent recruitment of GINS and RPA during S phase. These findings elucidate the in vivo molecular details of the DDK-dependent Sld3-MCM association, which plays a crucial role in MCM helicase activation and origin unwinding.
Collapse
Affiliation(s)
| | | | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
10
|
Knockleby J, Kim BJ, Mehta A, Lee H. Cdk1-mediated phosphorylation of Cdc7 suppresses DNA re-replication. Cell Cycle 2016; 15:1494-505. [PMID: 27105124 PMCID: PMC4934051 DOI: 10.1080/15384101.2016.1176658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/23/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
To maintain genetic stability, the entire mammalian genome must replicate only once per cell cycle. This is largely achieved by strictly regulating the stepwise formation of the pre-replication complex (pre-RC), followed by the activation of individual origins of DNA replication by Cdc7/Dbf4 kinase. However, the mechanism how Cdc7 itself is regulated in the context of cell cycle progression is poorly understood. Here we report that Cdc7 is phosphorylated by a Cdk1-dependent manner during prometaphase on multiple sites, resulting in its dissociation from origins. In contrast, Dbf4 is not removed from origins in prometaphase, nor is it degraded as cells exit mitosis. Our data thus demonstrates that constitutive phosphorylation of Cdc7 at Cdk1 recognition sites, but not the regulation of Dbf4, prevents the initiation of DNA replication in normally cycling cells and under conditions that promote re-replication in G2/M. As cells exit mitosis, PP1α associates with and dephosphorylates Cdc7. Together, our data support a model where Cdc7 (de)phosphorylation is the molecular switch for the activation and inactivation of DNA replication in mitosis, directly connecting Cdc7 and PP1α/Cdk1 to the regulation of once-per-cell cycle DNA replication in mammalian cells.
Collapse
Affiliation(s)
- James Knockleby
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Byung Ju Kim
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Avani Mehta
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
| | - Hoyun Lee
- Tumour Biology Group, Advanced Medical Research Institute of Canada, Health Sciences North, Sudbury, Ontario, Canada
- Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, Canada
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
12
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|