1
|
Latif MU, Schmidt GE, Mercan S, Rahman R, Gibhardt CS, Stejerean-Todoran I, Reutlinger K, Hessmann E, Singh SK, Moeed A, Rehman A, Butt UJ, Bohnenberger H, Stroebel P, Bremer SC, Neesse A, Bogeski I, Ellenrieder V. NFATc1 signaling drives chronic ER stress responses to promote NAFLD progression. Gut 2022; 71:2561-2573. [PMID: 35365570 PMCID: PMC9664107 DOI: 10.1136/gutjnl-2021-325013] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/06/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) can persist in the stage of simple hepatic steatosis or progress to steatohepatitis (NASH) with an increased risk for cirrhosis and cancer. We examined the mechanisms controlling the progression to severe NASH in order to develop future treatment strategies for this disease. DESIGN NFATc1 activation and regulation was examined in livers from patients with NAFLD, cultured and primary hepatocytes and in transgenic mice with differential hepatocyte-specific expression of the transcription factor (Alb-cre, NFATc1c.a . and NFATc1Δ/Δ ). Animals were fed with high-fat western diet (WD) alone or in combination with tauroursodeoxycholic acid (TUDCA), a candidate drug for NAFLD treatment. NFATc1-dependent ER stress-responses, NLRP3 inflammasome activation and disease progression were assessed both in vitro and in vivo. RESULTS NFATc1 expression was weak in healthy livers but strongly induced in advanced NAFLD stages, where it correlates with liver enzyme values as well as hepatic inflammation and fibrosis. Moreover, high-fat WD increased NFATc1 expression, nuclear localisation and activation to promote NAFLD progression, whereas hepatocyte-specific depletion of the transcription factor can prevent mice from disease acceleration. Mechanistically, NFATc1 drives liver cell damage and inflammation through ER stress sensing and activation of the PERK-CHOP unfolded protein response (UPR). Finally, NFATc1-induced disease progression towards NASH can be blocked by TUDCA administration. CONCLUSION NFATc1 stimulates NAFLD progression through chronic ER stress sensing and subsequent activation of terminal UPR signalling in hepatocytes. Interfering with ER stress-responses, for example, by TUDCA, protects fatty livers from progression towards manifest NASH.
Collapse
Affiliation(s)
- Muhammad Umair Latif
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Geske Elisabeth Schmidt
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Sercan Mercan
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Raza Rahman
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine Silvia Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Ioana Stejerean-Todoran
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Kristina Reutlinger
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Abdul Moeed
- Institute for Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max-Planck-Institute for Experimental Medicine, Goettingen, Niedersachsen, Germany
| | | | - Philipp Stroebel
- Institute of Pathology, University Medical Center Göttingen, Gottingen, Germany
| | - Sebastian Christopher Bremer
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Gottingen, Niedersachsen, Germany
| |
Collapse
|
2
|
Liu Y, Lyu Y, Wang H. TRP Channels as Molecular Targets to Relieve Endocrine-Related Diseases. Front Mol Biosci 2022; 9:895814. [PMID: 35573736 PMCID: PMC9095829 DOI: 10.3389/fmolb.2022.895814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transient receptor potential (TRP) channels are polymodal channels capable of sensing environmental stimuli, which are widely expressed on the plasma membrane of cells and play an essential role in the physiological or pathological processes of cells as sensors. TRPs often form functional homo- or heterotetramers that act as cation channels to flow Na+ and Ca2+, change membrane potential and [Ca2+]i (cytosolic [Ca2+]), and change protein expression levels, channel attributes, and regulatory factors. Under normal circumstances, various TRP channels respond to intracellular and extracellular stimuli such as temperature, pH, osmotic pressure, chemicals, cytokines, and cell damage and depletion of Ca2+ reserves. As cation transport channels and physical and chemical stimulation receptors, TRPs play an important role in regulating secretion, interfering with cell proliferation, and affecting neural activity in these glands and their adenocarcinoma cells. Many studies have proved that TRPs are widely distributed in the pancreas, adrenal gland, and other glands. This article reviews the specific regulatory mechanisms of various TRP channels in some common glands (pancreas, salivary gland, lacrimal gland, adrenal gland, mammary gland, gallbladder, and sweat gland).
Collapse
|
3
|
Noll BD, Grdzelishvili A, Brennan MT, Mougeot FB, Mougeot JLC. Immortalization of Salivary Gland Epithelial Cells of Xerostomic Patients: Establishment and Characterization of Novel Cell Lines. J Clin Med 2020; 9:jcm9123820. [PMID: 33255850 PMCID: PMC7768371 DOI: 10.3390/jcm9123820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Primary Sjögren’s Syndrome (pSS) is an autoimmune disease mainly affecting salivary and lacrimal glands. Previous pSS studies have relied on primary cell culture models or cancer cell lines with limited relevance to the disease. Our objective was to generate and characterize immortalized salivary gland epithelial cells (iSGECs) derived from labial salivary gland (LSG) biopsies of pSS patients (focus score > 1) and non-Sjögren’s Syndrome (nSS) xerostomic (i.e., sicca) female patients. To characterize iSGECs (n = 3), mRNA expression of specific epithelial and acinar cell markers was quantified by qRT-PCR. Protein expression of characterization markers was determined by immunocytochemistry and Western blot. Secretion of α-amylase by iSGECs was confirmed through colorimetric activity assay. Spheroid formation and associated alterations in expression markers were determined using matrigel-coated cell culture plates. Consistent mRNA and protein expressions of both epithelial and pro-acinar cell markers were observed in all three iSGEC lines. When cultured on matrigel medium, iSGECs formed spheroids, secreted α-amylase after β-adrenergic stimulation, and expressed multiple acinar cell markers at late passages. One iSGEC line retained adequate cell morphology without a loss of SV40Lt expression and proliferation potential after over 100 passages. In conclusion, our established iSGEC lines represent a viable model for salivary research due to their passaging capacity and maintenance of pro-acinar cell characteristics.
Collapse
|
4
|
TRP Channel Involvement in Salivary Glands-Some Good, Some Bad. Cells 2018; 7:cells7070074. [PMID: 29997338 PMCID: PMC6070825 DOI: 10.3390/cells7070074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Secretion of fluid by salivary glands is stimulated by activation of specific receptors on acinar cell plasma membrane and is mediated by an increase in cytosolic [Ca2+] ([Ca2+]i). The increase in [Ca2+]i regulates a number of ion channels and transporters that are required for establishing an osmotic gradient that drives water flow via aquaporin water channels in the apical membrane. The Store-Operated Ca2+ Entry (SOCE) mechanism, which is regulated in response to depletion of ER-Ca2+, determines the sustained [Ca2+]i increase required for prolonged fluid secretion. Core components of SOCE in salivary gland acinar cells are Orai1 and STIM1. In addition, TRPC1 is a major and non-redundant contributor to SOCE and fluid secretion in salivary gland acinar and ductal cells. Other TRP channels that contribute to salivary flow are TRPC3 and TRPV4, while presence of others, including TRPM8, TRPA1, TRPV1, and TRPV3, have been identified in the gland. Loss of salivary gland function leads to dry mouth conditions, or xerostomia, which is clinically seen in patients who have undergone radiation treatment for head-and-neck cancers, and those with the autoimmune exocrinopathy, Sjögren’s syndrome (pSS). TRPM2 is a unique TRP channel that acts as a sensor for intracellular ROS. We will discuss recent studies reported by us that demonstrate a key role for TRPM2 in radiation-induced salivary gland dysfunction. Further, there is increasing evidence that TRPM2 might be involved in inflammatory processes. These interesting findings point to the possible involvement of TRPM2 in Sjögren’s Syndrome, although further studies will be required to identify the exact role of TRPM2 in this disease.
Collapse
|
5
|
Ambudkar I. Calcium signaling defects underlying salivary gland dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1771-1777. [PMID: 30006140 DOI: 10.1016/j.bbamcr.2018.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
Abstract
Salivary glands secrete saliva, a mixture of proteins and fluids, which plays an extremely important role in the maintenance of oral health. Loss of salivary secretion causes a dry mouth condition, xerostomia, which has numerous deleterious consequences including opportunistic infections within the oral cavity, difficulties in eating and swallowing food, and problems with speech. Saliva secretion is regulated by stimulation of specific signaling mechanisms within the acinar cells of the gland. Neurotransmitter-stimulated increase in cytosolic [Ca2+] ([Ca2+]i) in acinar cells is the primary trigger for salivary fluid secretion from salivary glands, the loss of which is a critical factor underlying dry mouth conditions in patients. The increase in [Ca2+]i regulates multiple ion channel and transport activities that together generate the osmotic gradient which drives fluid secretion across the apical membrane. Ca2+ entry mediated by the Store-Operated Ca2+ Entry (SOCE) mechanism provides the essential [Ca2+]i signals to trigger salivary gland fluid secretion. Under physiological conditions depletion of ER-Ca2+ stores is caused by activation of IP3R by IP3 and this provides the stimulus for SOCE. Core components of SOCE in salivary gland acinar cells are the plasma membrane Ca2+ channels, Orai1 and TRPC1, and STIM1, a Ca2+-sensor protein in the ER, which regulates both channels. In addition, STIM2 likely enhances the sensitivity of cells to ER-Ca2+ depletion thereby tuning the cellular response to agonist stimulation. Two major, clinically relevant, conditions which cause irreversible salivary gland dysfunction are radiation treatment for head-and-neck cancers and the autoimmune exocrinopathy, Sjögren's syndrome (pSS). However, the exact mechanism(s) that causes the loss of fluid secretion, in either condition, is not clearly understood. A number of recent studies have identified that defects in critical Ca2+ signaling mechanisms underlie salivary gland dysfunction caused by radiation treatment or Sjögren's syndrome (pSS). This chapter will discuss these very interesting and important studies.
Collapse
Affiliation(s)
- Indu Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
P2X7R: independent modulation of aquaporin 5 expression in CdCl 2-injured alveolar epithelial cells. Histochem Cell Biol 2018; 149:197-208. [PMID: 29397411 DOI: 10.1007/s00418-018-1637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
Abstract
The expression of aquaporin 5 in alveolar epithelial type I cells under conditions of cadmium-induced injury has not yet been discovered. We investigated the effect of the P2X7R agonist BzATP under this condition, since P2X7R is involved in altered regulation of aquaporin 5 in pulmonary fibrosis. CdCl2/TGF-β1 treatment of lung epithelial MLE-12 cells was leading to increasing P2X7R, and aquaporin 5 protein levels. The aquaporin 5 expression was P2X7R-independent in MLE-12 cells under cadmium, as was shown in blocking experiments with oxATP. Further, the expression of both proteins increased after 24 h CdCl2/TGF-β1 treatment of precision-cut lung slices, but decreased after 72 h. Using immunohistochemistry, the activation of the P2X7R with the agonist BzATP modulated the aquaporin 5 immunoreactivity in the alveolar epithelium of precision-cut lung slices from wild-type but not from P2X7R knockout mice. Similarly, aquaporin 5 protein was reduced in BzATP-treated immortal lung epithelial E10 cells. Surprisingly, untreated alveolar epithelial type II cells of P2X7R knockouts exhibited a pronounced apical immunoreactivity in addition to the remaining alveolar epithelial type I cells. BzATP exposure did not alter this distribution pattern, but increased the number of apoptotic alveolar epithelial type II cells in wild-type lung slices.
Collapse
|
7
|
Uzhachenko R, Shanker A, Dupont G. Computational properties of mitochondria in T cell activation and fate. Open Biol 2017; 6:rsob.160192. [PMID: 27852805 PMCID: PMC5133440 DOI: 10.1098/rsob.160192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA .,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, and the Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
8
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
9
|
Rump K, Unterberg M, Bergmann L, Bankfalvi A, Menon A, Schäfer S, Scherag A, Bazzi Z, Siffert W, Peters J, Adamzik M. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: a prospective laboratory and patient study. J Transl Med 2016; 14:321. [PMID: 27871297 PMCID: PMC5117689 DOI: 10.1186/s12967-016-1079-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Background The C-allele of the aquaporin (AQP5) -1364A/C polymorphism is associated with decreased AQP5 expression but increased 30-day survival in patients with severe sepsis. AQP5 expression might affect survival via an impact on cell migration. Consequently, we tested the hypothesis that (1) Aqp5 knockout (KO) compared to wild type (WT) mice show an increased survival following lipopolysaccharide (LPS) administration, and that (2) AQP5 expression and the AQP5 -1364A/C polymorphism alters immune cell migration. Methods We investigated Aqp5-KO and wild type mice after intraperitoneal injection of either E.coli lipopolysaccharide (LPS, serotype O127:B8, 20 mg/kg) or saline. Furthermore, neutrophils of volunteers with the AA-AQP5 or AC/CC-AQP5- genotype were incubated with 10−8 M Chemotactic peptide (fMLP) and their migration was assessed by a filter migration assay. Additionally, AQP5 expression after fMLP incubation was analyzed by RT-PCR and Western blot. Moreover, migration of AQP5 overexpressing Jurkat cells was studied after SDF-1α-stimulation. We used exact Wilcoxon–Mann–Whitney tests; exact Wilcoxon signed-rank tests and the Kaplan–Meier estimator for statistical analysis. Results Fifty-six percent of Aqp5-KO but only 22% of WT mice survived following LPS-injection. WT mice showed increased neutrophil migration into peritoneum and lung compared to Aqp5-KO mice. Target-oriented migration of neutrophils was seen after 0.5 h in AA-genotype cells but only after 1.5 h in AC/CC-genotype cells, with a threefold lower migrating cell count. AQP5 overexpressing Jurkat cells showed a 2.4 times stronger migration compared to native Jurkat cells. Conclusion The AQP5 genotype may influence survival following LPS by altering neutrophil cell migration. Trial registration DRKS00010437. Retrospectively registered 26 April 2016 Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1079-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany. .,Institut für Pharmakogenetik, Universität Duisburg-Essen, Duisburg, Germany. .,Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany.
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Agnes Bankfalvi
- Institut für Pathologie, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| | - Anil Menon
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Simon Schäfer
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany.,Klinik für Anästhesiologie, LMU, Munich, Germany
| | - André Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Zainab Bazzi
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Duisburg, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, In der Schornau 55, 45882, Bochum, Germany.,Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum and Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|