1
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1/Htm1 mannosidase and protein disulfide isomerase. Nat Struct Mol Biol 2025:10.1038/s41594-025-01491-y. [PMID: 39930008 DOI: 10.1038/s41594-025-01491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/15/2025] [Indexed: 02/19/2025]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In Saccharomyces cerevisiae, the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a degradation signal. Interestingly, Mnl1 is associated with protein disulfide isomerase (Pdi1). Here we used cryo-electron microscopy, biochemical and in vivo experiments to elucidate how this complex initiates ERAD. The Mnl1-Pdi1 complex first demannosylates misfolded, globular proteins that are recognized through the C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex. Mnl1 blocks the canonical oxidative function of Pdi1, allowing it to function as a disulfide reductase in ERAD. The generated unfolded polypeptides can then be translocated across the membrane into the cytosol.
Collapse
Affiliation(s)
- Dan Zhao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xudong Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1 mannosidase and protein disulfide isomerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618908. [PMID: 39464000 PMCID: PMC11507893 DOI: 10.1101/2024.10.17.618908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In S. cerevisiae, the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a signal that triggers degradation. Curiously, Mnl1 is permanently associated with protein disulfide isomerase (Pdi1). Here, we have used cryo-electron microscopy, biochemical, and in vivo experiments to clarify how this complex initiates ERAD. The Mnl1-Pdi1 complex first de-mannosylates misfolded, globular proteins that are recognized through a C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex, generating unfolded polypeptides that can be translocated across the membrane. Mnl1 blocks the canonical oxidative function of Pdi1, but allows it to function as the elusive disulfide reductase in ERAD.
Collapse
Affiliation(s)
- Dan Zhao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xudong Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
4
|
Mahilkar A, Nagendra P, Venkataraman P, Deshmukh S, Saini S. Rapid evolution of pre-zygotic reproductive barriers in allopatric populations. Microbiol Spectr 2023; 11:e0195023. [PMID: 37787555 PMCID: PMC10714765 DOI: 10.1128/spectrum.01950-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE A population diversifies into two or more species-such a process is known as speciation. In sexually reproducing microorganisms, which barriers arise first-pre-mating or post-mating? In this work, we quantify the relative strengths of these barriers and demonstrate that pre-mating barriers arise first in allopatrically evolving populations of yeast, Saccharomyces cerevisiae. These defects arise because of the altered kinetics of mating of the participating groups. Thus, our work provides an understanding of how adaptive changes can lead to diversification among microbial populations.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Pavithra Venkataraman
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Powai, Maharashtra, India
| |
Collapse
|
5
|
Christianson JC, Jarosch E, Sommer T. Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 2023; 24:777-796. [PMID: 37528230 DOI: 10.1038/s41580-023-00633-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
Maintaining proteome integrity is essential for long-term viability of all organisms and is overseen by intrinsic quality control mechanisms. The secretory pathway of eukaryotes poses a challenge for such quality assurance as proteins destined for secretion enter the endoplasmic reticulum (ER) and become spatially segregated from the cytosolic machinery responsible for disposal of aberrant (misfolded or otherwise damaged) or superfluous polypeptides. The elegant solution provided by evolution is ER-membrane-bound ubiquitylation machinery that recognizes misfolded or surplus proteins or by-products of protein biosynthesis in the ER and delivers them to 26S proteasomes for degradation. ER-associated protein degradation (ERAD) collectively describes this specialized arm of protein quality control via the ubiquitin-proteasome system. But, instead of providing a single strategy to remove defective or unwanted proteins, ERAD represents a collection of independent processes that exhibit distinct yet overlapping selectivity for a wide range of substrates. Not surprisingly, ER-membrane-embedded ubiquitin ligases (ER-E3s) act as central hubs for each of these separate ERAD disposal routes. In these processes, ER-E3s cooperate with a plethora of specialized factors, coordinating recognition, transport and ubiquitylation of undesirable secretory, membrane and cytoplasmic proteins. In this Review, we focus on substrate processing during ERAD, highlighting common threads as well as differences between the many routes via ERAD.
Collapse
Affiliation(s)
- John C Christianson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| | - Ernst Jarosch
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Centrer for Molecular Medicine in Helmholtz Association, Berlin-Buch, Germany.
- Institute for Biology, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Nakamasu S, Kikuma T, Hashiguchi Y, Tada S, Sano K, Ito Y, Takeda Y. Phenotypic analysis of α1,2-mannosidase-like protein deletion mutants in Saccharomyces cerevisiae. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000640. [PMID: 36217443 PMCID: PMC9547274 DOI: 10.17912/micropub.biology.000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
α1,2‑mannosidase-like proteins mediate quality control of glycoproteins in the endoplasmic reticulum. This study explored α1,2‑mannosidase-like protein functions in Saccharomyces cerevisiae. Single disruptants in targeted protein-coding genes were found to be viable; however, deletion of MNL2 resulted in declined yeast growth at 37 °C. The normal growth rate was recovered in double-deletion strains where one of the deletions was in MNS1 . We also measured the mannosidase activity of microsomal fractions of deficient strains using artificial glycan. Increased mannose trimming activities were demonstrated by the microsomes of MNL2 -deletion strains compared to levels of activity exhibited by the microsomes of the control strain.
Collapse
Affiliation(s)
| | - Takashi Kikuma
- College of Life Sciences, Ritsumeikan University
,
Correspondence to: Takashi Kikuma (
)
| | | | - Sato Tada
- College of Life Sciences, Ritsumeikan University
| | - Kanae Sano
- College of Life Sciences, Ritsumeikan University
| | - Yukishige Ito
- Graduate School of Science, Osaka University
,
RIKEN Cluster for Pioneering Research
| | | |
Collapse
|
7
|
Zhang J, Xia Y, Wang D, Du Y, Chen Y, Zhang C, Mao J, Wang M, She YM, Peng X, Liu L, Voglmeir J, He Z, Liu L, Li J. A Predominant Role of AtEDEM1 in Catalyzing a Rate-Limiting Demannosylation Step of an Arabidopsis Endoplasmic Reticulum-Associated Degradation Process. FRONTIERS IN PLANT SCIENCE 2022; 13:952246. [PMID: 35874007 PMCID: PMC9302962 DOI: 10.3389/fpls.2022.952246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal. Here we report that the Arabidopsis irb1 (reversal of bri1) mutants accumulate brassinosteroid-insensitive 1-5 (bri1-5), an ER-retained mutant variant of the brassinosteroid receptor BRI1 and are defective in one of the Arabidopsis Htm1/EDEM homologs, AtEDEM1. We show that the wild-type AtEDEM1, but not its catalytically inactive mutant, rescues irb1-1. Importantly, an insertional mutation of the Arabidopsis Asparagine-Linked Glycosylation 3 (ALG3), which causes N-linked glycosylation with truncated glycans carrying a different free α1,6-mannose residue, completely nullifies the inhibitory effect of irb1-1 on bri1-5 ERAD. Interestingly, an insertional mutation in AtEDEM2, the other Htm1/EDEM homolog, has no detectable effect on bri1-5 ERAD; however, it enhances the inhibitory effect of irb1-1 on bri1-5 degradation. Moreover, AtEDEM2 transgenes rescued the irb1-1 mutation with lower efficacy than AtEDEM1. Simultaneous elimination of AtEDEM1 and AtEDEM2 completely blocks generation of α1,6-mannose-exposed N-glycans on bri1-5, while overexpression of either AtEDEM1 or AtEDEM2 stimulates bri1-5 ERAD and enhances the bri1-5 dwarfism. We concluded that, despite its functional redundancy with AtEDEM2, AtEDEM1 plays a predominant role in promoting bri1-5 degradation.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yang Xia
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dinghe Wang
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamin Du
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongwu Chen
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Zhang
- University of Chinese Academy of Sciences, Beijing, China
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muyang Wang
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Min She
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zuhua He
- The Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Piirainen MA, Frey AD. The Impact of Glycoengineering on the Endoplasmic Reticulum Quality Control System in Yeasts. Front Mol Biosci 2022; 9:910709. [PMID: 35720120 PMCID: PMC9201249 DOI: 10.3389/fmolb.2022.910709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.
Collapse
Affiliation(s)
- Mari A. Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Alexander D. Frey
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Kemistintie 1, Aalto University, Otakaari, Finland
- *Correspondence: Alexander D. Frey,
| |
Collapse
|
9
|
Freije BJ, Freije WM, Do TU, Adkins GE, Bruch A, Hurtig JE, Morano KA, Schaffrath R, West JD. Identifying Interaction Partners of Yeast Protein Disulfide Isomerases Using a Small Thiol-Reactive Cross-Linker: Implications for Secretory Pathway Proteostasis. Chem Res Toxicol 2022; 35:326-336. [PMID: 35084835 PMCID: PMC8860869 DOI: 10.1021/acs.chemrestox.1c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein disulfide isomerases (PDIs) function in forming the correct disulfide bonds in client proteins, thereby aiding the folding of proteins that enter the secretory pathway. Recently, several PDIs have been identified as targets of organic electrophiles, yet the client proteins of specific PDIs remain largely undefined. Here, we report that PDIs expressed in Saccharomyces cerevisiae are targets of divinyl sulfone (DVSF) and other thiol-reactive protein cross-linkers. Using DVSF, we identified the interaction partners that were cross-linked to Pdi1 and Eug1, finding that both proteins form cross-linked complexes with other PDIs, as well as vacuolar hydrolases, proteins involved in cell wall biosynthesis and maintenance, and many ER proteostasis factors involved ER stress signaling and ER-associated protein degradation (ERAD). The latter discovery prompted us to examine the effects of DVSF on ER quality control, where we found that DVSF inhibits the degradation of the ERAD substrate CPY*, in addition to covalently modifying Ire1 and blocking the activation of the unfolded protein response. Our results reveal that DVSF targets many proteins within the ER proteostasis network and suggest that these proteins may be suitable targets for covalent therapeutic development in the future.
Collapse
Affiliation(s)
- Benjamin J. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Wilson M. Freije
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - To Uyen Do
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Grace E. Adkins
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA
| | - Alexander Bruch
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - Jennifer E. Hurtig
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Kevin A. Morano
- Department of Microbiology & Molecular Genetics; McGovern Medical School; University of Texas at Houston; Houston, TX USA
| | - Raffael Schaffrath
- Fachgebiet Mikrobiologie; Institut für Biologie; Universität Kassel; Kassel, Germany
| | - James D. West
- Biochemistry & Molecular Biology Program; Departments of Biology and Chemistry; The College of Wooster; Wooster, OH USA,Corresponding author , phone: 330-263-2368
| |
Collapse
|
10
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
11
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
12
|
Ninagawa S. N-glycan Dependent Protein Quality Control System in the Endoplasmic Reticulum. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2108.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University
| |
Collapse
|
13
|
Piirainen MA, Frey AD. Investigating the role of ERAD on antibody processing in glycoengineered Saccharomyces cerevisiae. FEMS Yeast Res 2021; 20:5700285. [PMID: 31922547 DOI: 10.1093/femsyr/foaa002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
N-glycosylation plays an important role in the endoplasmic reticulum quality control (ERQC). N-glycan biosynthesis pathways have been engineered in yeasts and fungi to enable the production of therapeutic glycoproteins with human-compatible N-glycosylation, and some glycoengineering approaches alter the synthesis of the lipid-linked oligosaccharide (LLO). Because the effects of LLO engineering on ERQC are currently unknown, we characterized intracellular processing of IgG in glycoengineered Δalg3 Δalg11 Saccharomyces cerevisiae strain and analyzed how altered LLO structures affect endoplasmic reticulum-associated degradation (ERAD). Intracellular IgG light and heavy chain molecules expressed in Δalg3 Δalg11 strain are ERAD substrates and targeted to ERAD independently of Yos9p and Htm1p, whereas in the presence of ALG3 ERAD targeting is dependent on Yos9p but does not require Htm1p. Blocking of ERAD accumulated ER and post-Golgi forms of IgG and increased glycosylation of matα secretion signal but did not improve IgG secretion. Our results show ERAD targeting of a heterologous glycoprotein in yeast, and suggest that proteins in the ER can be targeted to ERAD via other mechanisms than the Htm1p-Yos9p-dependent route when the LLO biosynthesis is altered.
Collapse
Affiliation(s)
- Mari A Piirainen
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, Aalto University, Finland, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
14
|
In Vitro Mannosidase Assay of EDEMs: ER Degradation-Enhancing α-Mannosidase-Like Proteins. Methods Mol Biol 2021. [PMID: 32306323 DOI: 10.1007/978-1-0716-0430-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Quality control of newly synthesized glycoproteins is tightly regulated by sugar processing of N-glycans and by recognition of specific glycan structures by lectins in the endoplasmic reticulum (ER). Mannose trimming and its recognition determine the targeting of misfolded glycoproteins for ER-associated degradation. ER degradation-enhancing α-mannosidase-like (EDEM) proteins in mammals and their homologue Htm1p/Mnl1p in Saccharomyces cerevisiae are involved in this process. To analyze the function of EDEM proteins, we expressed and purified recombinant EDEM3 from HEK293 cells and assessed its mannose-trimming activity in vitro.
Collapse
|
15
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
16
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
17
|
Patel C, Saad H, Shenkman M, Lederkremer GZ. Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD. Cells 2020; 9:cells9092138. [PMID: 32971745 PMCID: PMC7563561 DOI: 10.3390/cells9092138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
N-linked glycosylation and sugar chain processing, as well as disulfide bond formation, are among the most common post-translational protein modifications taking place in the endoplasmic reticulum (ER). They are essential modifications that are required for membrane and secretory proteins to achieve their correct folding and native structure. Several oxidoreductases responsible for disulfide bond formation, isomerization, and reduction have been shown to form stable, functional complexes with enzymes and chaperones that are involved in the initial addition of an N-glycan and in folding and quality control of the glycoproteins. Some of these oxidoreductases are selenoproteins. Recent studies also implicate glycan machinery–oxidoreductase complexes in the recognition and processing of misfolded glycoproteins and their reduction and targeting to ER-associated degradation. This review focuses on the intriguing cooperation between the glycoprotein-specific cell machineries and ER oxidoreductases, and highlights open questions regarding the functions of many members of this large family.
Collapse
Affiliation(s)
- Chaitanya Patel
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Marina Shenkman
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gerardo Z. Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, Cell Biology Division, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (C.P.); (H.S.); (M.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
18
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
19
|
Telini BDP, Menoncin M, Bonatto D. Does Inter-Organellar Proteostasis Impact Yeast Quality and Performance During Beer Fermentation? Front Genet 2020; 11:2. [PMID: 32076433 PMCID: PMC7006503 DOI: 10.3389/fgene.2020.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/06/2020] [Indexed: 02/02/2023] Open
Abstract
During beer production, yeast generate ethanol that is exported to the extracellular environment where it accumulates. Depending on the initial carbohydrate concentration in the wort, the amount of yeast biomass inoculated, the fermentation temperature, and the yeast attenuation capacity, a high concentration of ethanol can be achieved in beer. The increase in ethanol concentration as a consequence of the fermentation of high gravity (HG) or very high gravity (VHG) worts promotes deleterious pleiotropic effects on the yeast cells. Moderate concentrations of ethanol (5% v/v) change the enzymatic kinetics of proteins and affect biological processes, such as the cell cycle and metabolism, impacting the reuse of yeast for subsequent fermentation. However, high concentrations of ethanol (> 5% v/v) dramatically alter protein structure, leading to unfolded proteins as well as amorphous protein aggregates. It is noteworthy that the effects of elevated ethanol concentrations generated during beer fermentation resemble those of heat shock stress, with similar responses observed in both situations, such as the activation of proteostasis and protein quality control mechanisms in different cell compartments, including endoplasmic reticulum (ER), mitochondria, and cytosol. Despite the extensive published molecular and biochemical data regarding the roles of proteostasis in different organelles of yeast cells, little is known about how this mechanism impacts beer fermentation and how different proteostasis mechanisms found in ER, mitochondria, and cytosol communicate with each other during ethanol/fermentative stress. Supporting this integrative view, transcriptome data analysis was applied using publicly available information for a lager yeast strain grown under beer production conditions. The transcriptome data indicated upregulation of genes that encode chaperones, co-chaperones, unfolded protein response elements in ER and mitochondria, ubiquitin ligases, proteasome components, N-glycosylation quality control pathway proteins, and components of processing bodies (p-bodies) and stress granules (SGs) during lager beer fermentation. Thus, the main purpose of this hypothesis and theory manuscript is to provide a concise picture of how inter-organellar proteostasis mechanisms are connected with one another and with biological processes that may modulate the viability and/or vitality of yeast populations during HG/VHG beer fermentation and serial repitching.
Collapse
Affiliation(s)
- Bianca de Paula Telini
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Menoncin
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Bonatto
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Zhang J, Wu J, Liu L, Li J. The Crucial Role of Demannosylating Asparagine-Linked Glycans in ERADicating Misfolded Glycoproteins in the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2020; 11:625033. [PMID: 33510762 PMCID: PMC7835635 DOI: 10.3389/fpls.2020.625033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Most membrane and secreted proteins are glycosylated on certain asparagine (N) residues in the endoplasmic reticulum (ER), which is crucial for their correct folding and function. Protein folding is a fundamentally inefficient and error-prone process that can be easily interfered by genetic mutations, stochastic cellular events, and environmental stresses. Because misfolded proteins not only lead to functional deficiency but also produce gain-of-function cellular toxicity, eukaryotic organisms have evolved highly conserved ER-mediated protein quality control (ERQC) mechanisms to monitor protein folding, retain and repair incompletely folded or misfolded proteins, or remove terminally misfolded proteins via a unique ER-associated degradation (ERAD) mechanism. A crucial event that terminates futile refolding attempts of a misfolded glycoprotein and diverts it into the ERAD pathway is executed by removal of certain terminal α1,2-mannose (Man) residues of their N-glycans. Earlier studies were centered around an ER-type α1,2-mannosidase that specifically cleaves the terminal α1,2Man residue from the B-branch of the three-branched N-linked Man9GlcNAc2 (GlcNAc for N-acetylglucosamine) glycan, but recent investigations revealed that the signal that marks a terminally misfolded glycoprotein for ERAD is an N-glycan with an exposed α1,6Man residue generated by members of a unique folding-sensitive α1,2-mannosidase family known as ER-degradation enhancing α-mannosidase-like proteins (EDEMs). This review provides a historical recount of major discoveries that led to our current understanding on the role of demannosylating N-glycans in sentencing irreparable misfolded glycoproteins into ERAD. It also discusses conserved and distinct features of the demannosylation processes of the ERAD systems of yeast, mammals, and plants.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiarui Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|
21
|
Shenkman M, Ron E, Yehuda R, Benyair R, Khalaila I, Lederkremer GZ. Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates. Commun Biol 2018; 1:172. [PMID: 30374462 PMCID: PMC6194124 DOI: 10.1038/s42003-018-0174-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Collapse
Affiliation(s)
- Marina Shenkman
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Efrat Ron
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rivka Yehuda
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ron Benyair
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Isam Khalaila
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Gerardo Z Lederkremer
- School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
22
|
Mehrtash AB, Hochstrasser M. Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Semin Cell Dev Biol 2018; 93:111-124. [PMID: 30278225 DOI: 10.1016/j.semcdb.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Numerous nascent proteins undergo folding and maturation within the luminal and membrane compartments of the endoplasmic reticulum (ER). Despite the presence of various factors in the ER that promote protein folding, many proteins fail to properly fold and assemble and are subsequently degraded. Regulatory proteins in the ER also undergo degradation in a way that is responsive to stimuli or the changing needs of the cell. As in most cellular compartments, the ubiquitin-proteasome system (UPS) is responsible for the majority of the degradation at the ER-in a process termed ER-associated degradation (ERAD). Autophagic processes utilizing ubiquitin-like protein-conjugating systems also play roles in protein degradation at the ER. The ER is continuous with the nuclear envelope (NE), which consists of the outer nuclear membrane (ONM) and inner nuclear membrane (INM). While ERAD is known also to occur at the NE, only some of the ERAD ubiquitin-ligation pathways function at the INM. Protein degradation machineries in the ER/NE target a wide variety of substrates in multiple cellular compartments, including the cytoplasm, nucleoplasm, ER lumen, ER membrane, and the NE. Here, we review the protein degradation machineries of the ER and NE and the underlying mechanisms dictating recognition and processing of substrates by these machineries.
Collapse
Affiliation(s)
- Adrian B Mehrtash
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, 06520, USA; Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
23
|
Kniss A, Kazemi S, Löhr F, Berger M, Rogov VV, Güntert P, Sommer T, Jarosch E, Dötsch V. Structural investigation of glycan recognition by the ERAD quality control lectin Yos9. JOURNAL OF BIOMOLECULAR NMR 2018; 72:1-10. [PMID: 30066206 DOI: 10.1007/s10858-018-0201-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.
Collapse
Affiliation(s)
- Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sina Kazemi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Maren Berger
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Thomas Sommer
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
- Institute for Biology, Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Ernst Jarosch
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin-Buch, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
24
|
Yu S, Ito S, Wada I, Hosokawa N. ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing α-mannosidase-like protein 3 (EDEM3). J Biol Chem 2018; 293:10663-10674. [PMID: 29784879 DOI: 10.1074/jbc.ra118.003129] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Protein folding in the cell is regulated by several quality-control mechanisms. Correct folding of glycoproteins in the endoplasmic reticulum (ER) is tightly monitored by the recognition of glycan signals by lectins in the ER-associated degradation (ERAD) pathway. In mammals, mannose trimming from N-glycans is crucial for disposal of misfolded glycoproteins. The mannosidases responsible for this process are ER mannosidase I and ER degradation-enhancing α-mannosidase-like proteins (EDEMs). However, the molecular mechanism of mannose removal by EDEMs remains unclear, partly owing to the difficulty of reconstituting mannosidase activity in vitro Here, our analysis of EDEM3-mediated mannose-trimming activity on a misfolded glycoprotein revealed that ERp46, an ER-resident oxidoreductase, associates stably with EDEM3. This interaction, which depended on the redox activity of ERp46, involved formation of a disulfide bond between the cysteine residues of the ERp46 redox-active sites and the EDEM3 α-mannosidase domain. In a defined in vitro system consisting of recombinant proteins purified from HEK293 cells, the mannose-trimming activity of EDEM3 toward the model misfolded substrate, the glycoprotein T-cell receptor α locus (TCRα), was reconstituted only when ERp46 had established a covalent interaction with EDEM3. On the basis of these findings, we propose that disposal of misfolded glycoproteins through mannose trimming is tightly connected to redox-mediated regulation in the ER.
Collapse
Affiliation(s)
- Shangyu Yu
- From the Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507
| | - Shinji Ito
- the Medical Research Support Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, and
| | - Ikuo Wada
- the Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- From the Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507,
| |
Collapse
|
25
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
26
|
Abstract
The endoplasmic reticulum (ER) is the site of maturation for roughly one-third of all cellular proteins. ER-resident molecular chaperones and folding catalysts promote folding and assembly in a diverse set of newly synthesized proteins. Because these processes are error-prone, all eukaryotic cells have a quality-control system in place that constantly monitors the proteins and decides their fate. Proteins with potentially harmful nonnative conformations are subjected to assisted folding or degraded. Persistent folding-defective proteins are distinguished from folding intermediates and targeted for degradation by a specific process involving clearance from the ER. Although the basic principles of these processes appear conserved from yeast to animals and plants, there are distinct differences in the ER-associated degradation of misfolded glycoproteins. The general importance of ER quality-control events is underscored by their involvement in the biogenesis of diverse cell surface receptors and their crucial maintenance of protein homeostasis under diverse stress conditions.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
27
|
Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation. Cell 2017; 171:346-357.e12. [DOI: 10.1016/j.cell.2017.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
|
28
|
Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol 2017; 80:133-141. [PMID: 28688929 DOI: 10.1016/j.semcdb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
29
|
Bhadra AK, Das E, Roy I. Protein aggregation activates erratic stress response in dietary restricted yeast cells. Sci Rep 2016; 6:33433. [PMID: 27633120 PMCID: PMC5025734 DOI: 10.1038/srep33433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account.
Collapse
Affiliation(s)
- Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
30
|
Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation. Proc Natl Acad Sci U S A 2016; 113:E4015-24. [PMID: 27357682 DOI: 10.1073/pnas.1608795113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Our understanding of how the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery efficiently targets terminally misfolded proteins while avoiding the misidentification of nascent polypeptides and correctly folded proteins is limited. For luminal N-glycoproteins, demannosylation of their N-glycan to expose a terminal α1,6-linked mannose is necessary for their degradation via ERAD, but whether this modification is specific to misfolded proteins is unknown. Here we report that the complex of the mannosidase Htm1p and the protein disulfide isomerase Pdi1p (Htm1p-Pdi1p) acts as a folding-sensitive mannosidase for catalyzing this first committed step in Saccharomyces cerevisiae We reconstitute this step in vitro with Htm1p-Pdi1p and model glycoprotein substrates whose structural states we can manipulate. We find that Htm1p-Pdi1p is a glycoprotein-specific mannosidase that preferentially targets nonnative glycoproteins trapped in partially structured states. As such, Htm1p-Pdi1p is suited to act as a licensing factor that monitors folding in the ER lumen and preferentially commits glycoproteins trapped in partially structured states for degradation.
Collapse
|