1
|
Burdick JP, Basi RS, Burns KS, Weers PMM. The role of C-terminal ionic residues in self-association of apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184098. [PMID: 36481181 PMCID: PMC11433772 DOI: 10.1016/j.bbamem.2022.184098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.
Collapse
Affiliation(s)
- John P Burdick
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Rohin S Basi
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Kaitlyn S Burns
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA.
| |
Collapse
|
2
|
Rafiei A, Cruz Tetlalmatzi S, Edrington CH, Lee L, Crowder DA, Saltzberg DJ, Sali A, Brouhard G, Schriemer DC. Doublecortin engages the microtubule lattice through a cooperative binding mode involving its C-terminal domain. eLife 2022; 11:66975. [PMID: 35485925 PMCID: PMC9122500 DOI: 10.7554/elife.66975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Doublecortin (DCX) is a microtubule (MT)-associated protein that regulates MT structure and function during neuronal development and mutations in DCX lead to a spectrum of neurological disorders. The structural properties of MT-bound DCX that explain these disorders are incompletely determined. Here, we describe the molecular architecture of the DCX–MT complex through an integrative modeling approach that combines data from X-ray crystallography, cryo-electron microscopy, and a high-fidelity chemical crosslinking method. We demonstrate that DCX interacts with MTs through its N-terminal domain and induces a lattice-dependent self-association involving the C-terminal structured domain and its disordered tail, in a conformation that favors an open, domain-swapped state. The networked state can accommodate multiple different attachment points on the MT lattice, all of which orient the C-terminal tails away from the lattice. As numerous disease mutations cluster in the C-terminus, and regulatory phosphorylations cluster in its tail, our study shows that lattice-driven self-assembly is an important property of DCX.
Collapse
Affiliation(s)
- Atefeh Rafiei
- Department of Chemistry, University of Calgary, Calgary, Canada
| | | | | | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Daniel J Saltzberg
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
| | - Gary Brouhard
- Department of Biology, McGill University, Montreal, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Morgado I, Panahi A, Burwash AG, Das M, Straub JE, Gursky O. Molecular Insights into Human Hereditary Apolipoprotein A-I Amyloidosis Caused by the Glu34Lys Mutation. Biochemistry 2018; 57:5738-5747. [PMID: 30184436 PMCID: PMC11259198 DOI: 10.1021/acs.biochem.8b00817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hereditary apolipoprotein A-I (apoA-I) amyloidosis is a life-threatening incurable genetic disorder whose molecular underpinnings are unclear. In this disease, variant apoA-I, the major structural and functional protein of high-density lipoprotein, is released in a free form, undergoes an α-helix to intermolecular cross-β-sheet conversion along with a proteolytic cleavage, and is deposited as amyloid fibrils in various organs, which can cause organ damage and death. Glu34Lys is the only known charge inversion mutation in apoA-I that causes human amyloidosis. To elucidate the structural underpinnings of the amyloidogenic behavior of Glu34Lys apoA-I, we generated its recombinant globular N-terminal domain (residues 1-184) and compared the conformation and dynamics of its lipid-free form with those of two other naturally occurring apoA-I variants, Phe71Tyr (amyloidogenic) and Leu159Arg (non-amyloidogenic). All variants showed reduced structural stability and altered aromatic residue packing. The greatest decrease in stability was observed in the non-amyloidogenic variant, suggesting that amyloid formation is driven by local structural perturbations at sensitive sites. Molecular dynamics simulations revealed local helical unfolding and suggested that transient opening of the Trp72 side chain induced mutation-dependent structural perturbations in a sensitive region, including the major amyloid hot spot residues Leu14-Leu22. We posit that a shift from the "closed" to the "open" orientation of the Trp72 side chain modulates structural protection of amyloid hot spots, suggesting a previously unknown early step in the protein misfolding pathway.
Collapse
Affiliation(s)
- Isabel Morgado
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Andrew G. Burwash
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Madhurima Das
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521, United States
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, United States
- Amyloidosis Treatment and Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
4
|
Cooke AL, Morris J, Melchior JT, Street SE, Jerome WG, Huang R, Herr AB, Smith LE, Segrest JP, Remaley AT, Shah AS, Thompson TB, Davidson WS. A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 2018; 59:1244-1255. [PMID: 29773713 DOI: 10.1194/jlr.m085332] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Indexed: 01/28/2023] Open
Abstract
APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.
Collapse
Affiliation(s)
- Allison L Cooke
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Jamie Morris
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - John T Melchior
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - W Gray Jerome
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rong Huang
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Andrew B Herr
- Division of Immunobiology and Center for Systems Immunology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Loren E Smith
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jere P Segrest
- Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas B Thompson
- Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45237
| | - W Sean Davidson
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
5
|
Fioramonte M, de Jesus HCR, Ferrari AJR, Lima DB, Drekener RL, Correia CRD, Oliveira LG, Neves-Ferreira AGDC, Carvalho PC, Gozzo FC. XPlex: An Effective, Multiplex Cross-Linking Chemistry for Acidic Residues. Anal Chem 2018; 90:6043-6050. [PMID: 29565564 DOI: 10.1021/acs.analchem.7b05135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-linking/Mass spectrometry (XLMS) is a consolidated technique for structural characterization of proteins and protein complexes. Despite its success, the cross-linking chemistry currently used is mostly based on N-hydroxysuccinimide (NHS) esters, which react primarily with lysine residues. One way to expand the current applicability of XLMS into several new areas is to increase the number of cross-links obtainable for a target protein. We introduce a multiplex chemistry (denoted XPlex) that targets Asp, Glu, Lys, and Ser residues. XPlex can generate significantly more cross-links with reactions occurring at lower temperatures and enables targeting proteins that are not possible with NHS ester-based cross-linkers. We demonstrate the effectiveness of our approach in model proteins as well as a target Lys-poor protein, SalBIII. Identification of XPlex spectra requires a search engine capable of simultaneously considering multiple cross-linkers on the same run; to achieve this, we updated the SIM-XL search algorithm with a search mode tailored toward XPlex. In summary, we present a complete chemistry/computational solution for significantly increasing the number of possible distance constraints by mass spectrometry experiments, and thus, we are convinced that XPlex poses as a real complementary approach for structural proteomics studies.
Collapse
Affiliation(s)
- Mariana Fioramonte
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | | | - Diogo Borges Lima
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteu , Paris , France
| | - Roberta Lopes Drekener
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Luciana Gonzaga Oliveira
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| | | | - Paulo Costa Carvalho
- Laboratory for Proteomics and Protein Engineering , Carlos Chagas Institute , Fiocruz , Parana , Brazil
| | - Fabio Cesar Gozzo
- Institute of Chemistry , University of Campinas , CP 6154 , Campinas , Sao Paulo 13083-970 , Brazil
| |
Collapse
|
6
|
Fuentes LA, Beck WHJ, Tsujita M, Weers PMM. Charged Residues in the C-Terminal Domain of Apolipoprotein A-I Modulate Oligomerization. Biochemistry 2018; 57:2200-2210. [PMID: 29578333 DOI: 10.1021/acs.biochem.7b01052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Charged residues of the C-terminal domain of human apolipoprotein A-I (apoA-I) were targeted by site-directed mutagenesis. A series of mutant proteins was engineered in which lysine residues (Lys 195, 206, 208, 226, 238, and 239) or glutamate residues (Glu 234 and 235) were replaced by glutamine. The amino acid substitutions did not result in changes in secondary structure content or protein stability. Cross-linking and size-exclusion chromatography showed that the mutations resulted in reduced self-association, generating a predominantly monomeric apoA-I when five or six lysine residues were substituted. The rate of phosphatidylcholine vesicle solubilization was enhanced for all variants, with approximately a threefold rate enhancement for apoA-I lacking Lys 206, 208, 238, and 239, or Glu 234 and 235. Single or double mutations did not change the ability to protect lipolyzed low density lipoprotein from aggregation, but variants lacking >4 lysine residues were less effective in preventing lipoprotein aggregation. ApoA-I mediated cellular lipid efflux from wild-type mice macrophage foam cells was decreased for the variant with five lysine mutations. However, this protein was more effective in releasing cellular phosphatidylcholine and sphingomyelin from Abca1-null mice macrophage foam cells. This suggests that the mutations caused changes in the interaction with ABCA1 transporters and that membrane microsolubilization was primarily responsible for lipid efflux in cells lacking ABCA1. Taken together, this study indicates that ionic interactions in the C-terminal domain of apoA-I favor self-association and that monomeric apoA-I is more active in solubilizing phospholipid bilayers.
Collapse
Affiliation(s)
- Lukas A Fuentes
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Wendy H J Beck
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Maki Tsujita
- Department of Biochemistry , Nagoya City University Graduate School of Medical Sciences , Aichi 467-8601 , Japan
| | - Paul M M Weers
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| |
Collapse
|
7
|
Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat Protoc 2018; 13:431-458. [PMID: 29388937 DOI: 10.1038/nprot.2017.113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cross-linking coupled with mass spectrometry (XL-MS) has emerged as a powerful strategy for the identification of protein-protein interactions, characterization of interaction regions, and obtainment of structural information on proteins and protein complexes. In XL-MS, proteins or complexes are covalently stabilized with cross-linkers and digested, followed by identification of the cross-linked peptides by tandem mass spectrometry (MS/MS). This provides spatial constraints that enable modeling of protein (complex) structures and regions of interaction. However, most XL-MS approaches are not capable of differentiating intramolecular from intermolecular links in multimeric complexes, and therefore they cannot be used to study homodimer interfaces. We have recently developed an approach that overcomes this limitation by stable isotope-labeling of one of the two monomers, thereby creating a homodimer with one 'light' and one 'heavy' monomer. Here, we describe a step-by-step protocol for stable isotope-labeling, followed by controlled denaturation and refolding in the presence of the wild-type protein. The resulting light-heavy dimers are cross-linked, digested, and analyzed by mass spectrometry. We show how to quantitatively analyze the corresponding data with SIM-XL, an XL-MS software with a module tailored toward the MS/MS data from homodimers. In addition, we provide a video tutorial of the data analysis with this protocol. This protocol can be performed in ∼14 d, and requires basic biochemical and mass spectrometry skills.
Collapse
|
8
|
Melchior JT, Walker RG, Cooke AL, Morris J, Castleberry M, Thompson TB, Jones MK, Song HD, Rye KA, Oda MN, Sorci-Thomas MG, Thomas MJ, Heinecke JW, Mei X, Atkinson D, Segrest JP, Lund-Katz S, Phillips MC, Davidson WS. A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat Struct Mol Biol 2017; 24:1093-1099. [PMID: 29131142 PMCID: PMC5749415 DOI: 10.1038/nsmb.3501] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)A-I is an organizing scaffold protein that is critical to high-density lipoprotein (HDL) structure and metabolism, probably mediating many of its cardioprotective properties. However, HDL biogenesis is poorly understood, as lipid-free apoA-I has been notoriously resistant to high-resolution structural study. Published models from low-resolution techniques share certain features but vary considerably in shape and secondary structure. To tackle this central issue in lipoprotein biology, we assembled a team of structural biologists specializing in apolipoproteins and set out to build a consensus model of monomeric lipid-free human apoA-I. Combining novel and published cross-link constraints, small-angle X-ray scattering (SAXS), hydrogen-deuterium exchange (HDX) and crystallography data, we propose a time-averaged model consistent with much of the experimental data published over the last 40 years. The model provides a long-sought platform for understanding and testing details of HDL biogenesis, structure and function.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Allison L Cooke
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mark Castleberry
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Martin K Jones
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyun D Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Mary G Sorci-Thomas
- Department of Medicine, Section on Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaohu Mei
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jere P Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sissel Lund-Katz
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Parks BA, Schieltz DM, Andrews ML, Gardner MS, Rees JC, Toth CA, Jones JI, McWilliams LG, Kuklenyik Z, Pirkle JL, Barr JR. High throughput quantification of apolipoproteins A-I and B-100 by isotope dilution MS targeting fast trypsin releasable peptides without reduction and alkylation. Proteomics Clin Appl 2017; 11:1600128. [PMID: 28296203 PMCID: PMC5637893 DOI: 10.1002/prca.201600128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/03/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Apolipoprotein A-I (ApoA-I) and apolipoprotein B-100 (ApoB-100) are amphipathic proteins that are strong predictors of cardiovascular disease risk. The traceable calibration of apolipoprotein assays is a persistent challenge, especially for ApoB-100, which cannot be solubilized in purified form. EXPERIMENTAL DESIGN A simultaneous quantitation method for ApoA-I and ApoB-100 was developed using tryptic digestion without predigestion reduction and alkylation, followed by LC separation coupled with isotope dilution MS analysis. The accuracy of the method was assured by selecting structurally exposed signature peptides, optimal choice of detergent, protein:enzyme ratio, and incubation time. Peptide calibrators were value assigned by isobaric tagging isotope dilution MS amino acid analysis. RESULTS The method reproducibility was validated in technical repeats of three serum samples, giving 2-3% intraday CVs (N = 5) and <7% interday CVs (N = 21). The repeated analysis of interlaboratory harmonization standards showed -1% difference for ApoA-I and -12% for ApoB-100 relative to the assigned value. The applicability of the method was demonstrated by repeated analysis of 24 patient samples with a wide range of total cholesterol and triglyceride levels. CONCLUSIONS AND CLINICAL RELEVANCE The method is applicable for simultaneous analysis of ApoA-I and ApoB-100 in patient samples, and for characterization of serum pool calibrators for other analytical platforms.
Collapse
Affiliation(s)
- Bryan A Parks
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - David M Schieltz
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Michael L Andrews
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Michael S Gardner
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Jon C Rees
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Christopher A Toth
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Jeffrey I Jones
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Lisa G McWilliams
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Zsuzsanna Kuklenyik
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - James L Pirkle
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - John R Barr
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| |
Collapse
|
10
|
Melchior JT, Street SE, Andraski AB, Furtado JD, Sacks FM, Shute RL, Greve EI, Swertfeger DK, Li H, Shah AS, Lu LJ, Davidson WS. Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1. J Lipid Res 2017; 58:1374-1385. [PMID: 28476857 DOI: 10.1194/jlr.m075382] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
HDLs are a family of heterogeneous particles that vary in size, composition, and function. The structure of most HDLs is maintained by two scaffold proteins, apoA-I and apoA-II, but up to 95 other "accessory" proteins have been found associated with the particles. Recent evidence suggests that these accessory proteins are distributed across various subspecies and drive specific biological functions. Unfortunately, our understanding of the molecular composition of such subspecies is limited. To begin to address this issue, we separated human plasma and HDL isolated by ultracentrifugation (UC-HDL) into particles with apoA-I and no apoA-II (LpA-I) and those with both apoA-I and apoA-II (LpA-I/A-II). MS studies revealed distinct differences between the subfractions. LpA-I exhibited significantly more protein diversity than LpA-I/A-II when isolated directly from plasma. However, this difference was lost in UC-HDL. Most LpA-I/A-II accessory proteins were associated with lipid transport pathways, whereas those in LpA-I were associated with inflammatory response, hemostasis, immune response, metal ion binding, and protease inhibition. We found that the presence of apoA-II enhanced ABCA1-mediated efflux compared with LpA-I particles. This effect was independent of the accessory protein signature suggesting that apoA-II induces a structural change in apoA-I in HDLs.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Allison B Andraski
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Frank M Sacks
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115; Department of Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Rebecca L Shute
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Emily I Greve
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237
| | - Debi K Swertfeger
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Hailong Li
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - L Jason Lu
- Division of Biomedical Informatics Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH 45237.
| |
Collapse
|
11
|
Horn JVC, Ellena RA, Tran JJ, Beck WHJ, Narayanaswami V, Weers PMM. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1317-1325. [PMID: 28434970 DOI: 10.1016/j.bbamem.2017.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023]
Abstract
Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III.
Collapse
Affiliation(s)
- James V C Horn
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States
| | - Rachel A Ellena
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States
| | - Jesse J Tran
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States
| | - Wendy H J Beck
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
12
|
Oda MN. Lipid-free apoA-I structure - Origins of model diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:221-233. [PMID: 27890580 DOI: 10.1016/j.bbalip.2016.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/20/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
Apolipoprotein A-I (apoA-I) is a prominent member of the exchangeable apolipoprotein class of proteins, capable of transitioning between lipid-bound and lipid-free states. It is the primary structural and functional protein of high density lipoprotein (HDL). Lipid-free apoA-I is critical to de novo HDL formation as it is the preferred substrate of the lipid transporter, ATP Binding Cassette Transporter A1 (ABCA1) Remaley et al. (2001) [1]. Lipid-free apoA-I is an important element in reverse cholesterol transport and comprehension of its structure is a core issue in our understanding of cholesterol metabolism. However, lipid-free apoA-I is highly conformationally dynamic making it a challenging subject for structural analysis. Over the past 20years there have been significant advances in overcoming the dynamic nature of lipid-free apoA-I, which have resulted in a multitude of proposed conformational models.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, United States.
| |
Collapse
|
13
|
Gordon SM, Pourmousa M, Sampson M, Sviridov D, Islam R, Perrin BS, Kemeh G, Pastor RW, Remaley AT. Identification of a novel lipid binding motif in apolipoprotein B by the analysis of hydrophobic cluster domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:135-145. [PMID: 27814978 DOI: 10.1016/j.bbamem.2016.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Apolipoprotein B (apoB) is a large amphipathic protein that is the structural scaffold for the formation of several classes of lipoproteins involved in lipid transport throughout the body. The goal of the present study was to identify specific domains in the apoB sequence that contribute to its lipid binding properties. A sequence analysis algorithm was developed to identify stretches of hydrophobic amino acids devoid of charged amino acids, which are referred to as hydrophobic cluster domains (HCDs). This analysis identified 78 HCDs in apoB with hydrophobic stretches ranging from 6 to 26 residues. Each HCD was analyzed in silico for secondary structure and lipid binding properties, and a subset was synthesized for experimental evaluation. One HCD peptide, B38, showed high affinity binding to both isolated HDL and LDL, and could exchange between lipoproteins. All-atom molecular dynamics simulations indicate that B38 inserts 3.7Å below the phosphate plane of the bilayer. B38 forms an unusual α-helix with a broad hydrophobic face and polar serine and threonine residues on the opposite face. Based on this structure, we hypothesized that B38 could efflux cholesterol from cells. B38 showed a 12-fold greater activity than the 5A peptide, a bihelical Class A amphipathic helix (EC50 of 0.2658 vs. 3.188μM; p<0.0001), in promoting cholesterol efflux from ABCA1 expressing BHK-1 cells. In conclusion, we have identified novel domains within apoB that contribute to its lipid biding properties. Additionally, we have discovered a unique amphipathic helix design for efficient ABCA1-specific cholesterol efflux.
Collapse
Affiliation(s)
- Scott M Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mohsen Pourmousa
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Maureen Sampson
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rafique Islam
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - B Scott Perrin
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Georgina Kemeh
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Pollard RD, Fulp B, Sorci-Thomas MG, Thomas MJ. High-Density Lipoprotein Biogenesis: Defining the Domains Involved in Human Apolipoprotein A-I Lipidation. Biochemistry 2016; 55:4971-81. [PMID: 27501467 DOI: 10.1021/acs.biochem.6b00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first step in removing cholesterol from a cell is the ATP-binding cassette transporter 1 (ABCA1)-driven transfer of cholesterol to lipid-free or lipid-poor apolipoprotein A-I (apoA-I), which yields cholesterol-rich nascent high-density lipoprotein (nHDL) that then matures in plasma to spherical, cholesteryl ester-rich HDL. However, lipid-free apoA-I has a three-dimensional (3D) conformation that is significantly different from that of lipidated apoA-I on nHDL. By comparing the lipid-free apoA-I 3D conformation of apoA-I to that of 9-14 nm diameter nHDL, we formulated the hypothetical helical domain transitions that might drive particle formation. To test the hypothesis, ten apoA-I mutants were prepared that contained two strategically placed cysteines several of which could form intramolecular disulfide bonds and others that could not form these bonds. Mass spectrometry was used to identify amino acid sequence and intramolecular disulfide bond formation. Recombinant HDL (rHDL) formation was assessed with this group of apoA-I mutants. ABCA1-driven nHDL formation was measured in four mutants and wild-type apoA-I. The mutants contained cysteine substitutions in one of three regions: the N-terminus, amino acids 34 and 55 (E34C to S55C), central domain amino acids 104 and 162 (F104C to H162C), and the C-terminus, amino acids 200 and 233 (L200C to L233C). Mutants were studied in the locked form, with an intramolecular disulfide bond present, or unlocked form, with the cysteine thiol blocked by alkylation. Only small amounts of rHDL or nHDL were formed upon locking the central domain. We conclude that both the N- and C-terminal ends assist in the initial steps in lipid acquisition, but that opening of the central domain was essential for particle formation.
Collapse
Affiliation(s)
- Ricquita D Pollard
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina 27101, United States
| | - Brian Fulp
- Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27101, United States
| | - Mary G Sorci-Thomas
- Departments of Medicine, Division of Endocrinology, Pharmacology and Toxicology, and Blood Research Institute, BloodCenter of Wisconsin, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|