1
|
Malatesta M, Fornasier E, Di Salvo ML, Tramonti A, Zangelmi E, Peracchi A, Secchi A, Polverini E, Giachin G, Battistutta R, Contestabile R, Percudani R. One substrate many enzymes virtual screening uncovers missing genes of carnitine biosynthesis in human and mouse. Nat Commun 2024; 15:3199. [PMID: 38615009 PMCID: PMC11016064 DOI: 10.1038/s41467-024-47466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
The increasing availability of experimental and computational protein structures entices their use for function prediction. Here we develop an automated procedure to identify enzymes involved in metabolic reactions by assessing substrate conformations docked to a library of protein structures. By screening AlphaFold-modeled vitamin B6-dependent enzymes, we find that a metric based on catalytically favorable conformations at the enzyme active site performs best (AUROC Score=0.84) in identifying genes associated with known reactions. Applying this procedure, we identify the mammalian gene encoding hydroxytrimethyllysine aldolase (HTMLA), the second enzyme of carnitine biosynthesis. Upon experimental validation, we find that the top-ranked candidates, serine hydroxymethyl transferase (SHMT) 1 and 2, catalyze the HTMLA reaction. However, a mouse protein absent in humans (threonine aldolase; Tha1) catalyzes the reaction more efficiently. Tha1 did not rank highest based on the AlphaFold model, but its rank improved to second place using the experimental crystal structure we determined at 2.26 Å resolution. Our findings suggest that humans have lost a gene involved in carnitine biosynthesis, with HTMLA activity of SHMT partially compensating for its function.
Collapse
Affiliation(s)
- Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Martino Luigi Di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padua, Padova, Italy
| | | | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
2
|
Copley SD, Newton MS, Widney KA. How to Recruit a Promiscuous Enzyme to Serve a New Function. Biochemistry 2023; 62:300-308. [PMID: 35729117 PMCID: PMC9881647 DOI: 10.1021/acs.biochem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Promiscuous enzymes can be recruited to serve new functions when a genetic or environmental change makes catalysis of a novel reaction important for fitness or even survival. Subsequently, gene duplication and divergence can lead to evolution of an efficient and specialized new enzyme. Every organism likely has thousands of promiscuous enzyme activities that provide a vast reservoir of catalytic potential. However, much of this potential may not be accessible. We compiled kinetic parameters for promiscuous reactions catalyzed by 108 enzymes. The median value of kcat/KM is a very modest 31 M-1 s-1. Based upon the fluxes through metabolic pathways in E. coli, we estimate that many, if not most, promiscuous activities are too inefficient to impact fitness. However, mutations can elevate the level of an insufficient promiscuous activity by increasing enzyme expression, improving kcat/KM, or altering concentrations of the promiscuous and native substrates and allosteric regulators. Particularly in large bacterial populations, stochastic mutations may provide a viable pathway for recruitment of even inefficient promiscuous activities.
Collapse
|
3
|
Neves RP, Ramos MJ, Fernandes PA. Engineering DszC Mutants from Transition State Macrodipole Considerations and Evolutionary Sequence Analysis. J Chem Inf Model 2023; 63:20-26. [PMID: 36534708 PMCID: PMC9832474 DOI: 10.1021/acs.jcim.2c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe an approach to identify enzyme mutants with increased turnover using the enzyme DszC as a case study. Our approach is based on recalculating the barriers of alanine mutants through single-point energy calculations at the hybrid QM/MM level in the wild-type reactant and transition state geometries. We analyze the difference in the electron density between the reactant and transition state to identify sites/residues where electrostatic interactions stabilize the transition state over the reactants. We also assess the insertion of a unit probe charge to identify positions in which the introduction of charged residues lowers the barrier.
Collapse
|
4
|
Miyamoto T, Saitoh Y, Katane M, Sekine M, Sakai-Kato K, Homma H. Characterization of human cystathionine γ-lyase enzyme activities toward D-amino acids. Biosci Biotechnol Biochem 2022; 86:1536-1542. [PMID: 36085174 DOI: 10.1093/bbb/zbac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022]
Abstract
Various D-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for D-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine β-lyase possesses amino acid racemase activity in addition to β-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares relatively high amino acid sequence identity with cystathionine β-lyase. The enzyme did not show racemase activity toward various amino acids including alanine, and lyase and dehydratase activities were highest toward L-cystathionine and L-homoserine, respectively. The enzyme also showed weak activity toward L-cysteine and L-serine but no activity toward D-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Yasuaki Saitoh
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Masumi Katane
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Masae Sekine
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Kumiko Sakai-Kato
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan
| |
Collapse
|
5
|
Matsumura I, Patrick WM. Dan Tawfik's Lessons for Protein Engineers about Enzymes Adapting to New Substrates. Biochemistry 2022; 62:158-162. [PMID: 35820168 PMCID: PMC9851151 DOI: 10.1021/acs.biochem.2c00230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.
Collapse
Affiliation(s)
- Ichiro Matsumura
- O.
Wayne Rollins Research Center, 1510 Clifton Road NE, Room 4001, Atlanta, Georgia 30322, United States,E-mail:
| | - Wayne M. Patrick
- Centre
for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand,E-mail:
| |
Collapse
|
6
|
Abstract
Enzymes are widely used in the food industry. Their use as a supplement to the raw material for animal feed is a current research topic. Although there are several studies on the application of enzyme additives in the animal feed industry, it is necessary to search for new enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in certain environmental conditions and substrates. This will allow the improvement of the productive parameters in animals, reducing costs and making the processes more efficient. Technological needs have considered these catalysts as essential in many industrial sectors and research is constantly being carried out to optimize their use in those processes. This review describes the enzymes used in animal nutrition, their mode of action, their production and new sources of production as well as studies on different animal models to evaluate their effect on the productive performance intended for the production of animal feed.
Collapse
|
7
|
Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem 2021; 296:100797. [PMID: 34019879 PMCID: PMC8191291 DOI: 10.1016/j.jbc.2021.100797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Collapse
Affiliation(s)
- Jodi L Brewster
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
8
|
d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in Caenorhabditis elegans via the NMDA Receptor. J Neurosci 2020; 40:7531-7544. [PMID: 32855271 DOI: 10.1523/jneurosci.2358-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 01/28/2023] Open
Abstract
d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.
Collapse
|
9
|
Khan MS, Gargiulo S, Soumillion P. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. FEBS Lett 2020; 594:2421-2430. [PMID: 32412093 DOI: 10.1002/1873-3468.13814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022]
Abstract
Promiscuous activities of enzymes may serve as starting points for the evolution of new functions. However, most experimental examples of promiscuity affording an observable phenotype necessitate the artificial overexpression of the target enzyme. Here, we show that 3-isopropylmalate dehydrogenase (IPMDH), an enzyme involved in leucine biosynthesis, has a secondary activity on d-malate, which is sufficient for d-malate assimilation under physiological conditions where the enzyme is upregulated. In vitro, the turnover constant (kcat ) of IPMDH for d-malate is about 30-fold lower than the kcat for 3-isopropylmalate, yet sufficiently high to support the growth on d-malate. From an evolutionary perspective, our results highlight the possibility of phenotype emergence triggered by arbitrary changes in environmental conditions and prior to any mutational event.
Collapse
Affiliation(s)
- Mohammad Shahneawz Khan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,University of Dhaka, Bangladesh
| | - Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Mol Biotechnol 2019; 61:579-601. [DOI: 10.1007/s12033-019-00187-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Liao C, Seebeck FP. In Vitro Reconstitution of Bacterial DMSP Biosynthesis. Angew Chem Int Ed Engl 2019; 58:3553-3556. [DOI: 10.1002/anie.201814662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cangsong Liao
- Department for Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
12
|
Affiliation(s)
- Cangsong Liao
- Department for Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry; University of Basel; Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
13
|
Rocha JF, Pina AF, Sousa SF, Cerqueira NMFSA. PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01210a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PLP-dependent enzymes described on this review are attractive targets for enzyme engineering towards their application in an industrial biotechnology framework.
Collapse
Affiliation(s)
- Juliana F. Rocha
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - André F. Pina
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina
- Universidade do Porto
| | | |
Collapse
|
14
|
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annu Rev Biochem 2018; 87:187-216. [DOI: 10.1146/annurev-biochem-062917-012023] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| | - Wolfram Liebermeister
- INRA, Unité MaIAGE, 78352 Jouy en Josas, France
- Institute of Biochemistry, Charité Universitätsmedizin, Berlin, 10117 Berlin, Germany
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| |
Collapse
|
15
|
Fesko K, Suplatov D, Švedas V. Bioinformatic analysis of the fold type I PLP-dependent enzymes reveals determinants of reaction specificity in l-threonine aldolase from Aeromonas jandaei. FEBS Open Bio 2018; 8:1013-1028. [PMID: 29928580 PMCID: PMC5986058 DOI: 10.1002/2211-5463.12441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 01/19/2023] Open
Abstract
Understanding the role of specific amino acid residues in the molecular mechanism of a protein's function is one of the most challenging problems in modern biology. A systematic bioinformatic analysis of protein families and superfamilies can help in the study of structure–function relationships and in the design of improved variants of enzymes/proteins, but represents a methodological challenge. The pyridoxal‐5′‐phosphate (PLP)‐dependent enzymes are catalytically diverse and include the aspartate aminotransferase superfamily which implements a common structural framework known as type fold I. In this work, the recently developed bioinformatic online methods Mustguseal and Zebra were used to collect and study a large representative set of the aspartate aminotransferase superfamily with high structural, but low sequence similarity to l‐threonine aldolase from Aeromonas jandaei (LTAaj), in order to identify conserved positions that provide general properties in the superfamily, and to reveal family‐specific positions (FSPs) responsible for functional diversity. The roles of the identified residues in the catalytic mechanism and reaction specificity of LTAaj were then studied by experimental site‐directed mutagenesis and molecular modelling. It was shown that FSPs determine reaction specificity by coordinating the PLP cofactor in the enzyme's active centre, thus influencing its activation and the tautomeric equilibrium of the intermediates, which can be used as hotspots to modulate the protein's functional properties. Mutagenesis at the selected FSPs in LTAaj led to a reduction in a native catalytic activity and increased the rate of promiscuous reactions. The results provide insight into the structural basis of catalytic promiscuity of the PLP‐dependent enzymes and demonstrate the potential of bioinformatic analysis in studying structure–function relationship in protein superfamilies.
Collapse
Affiliation(s)
- Kateryna Fesko
- Institute of Organic Chemistry Graz University of Technology Austria
| | - Dmitry Suplatov
- Belozersky Institute of Physicochemical Biology Lomonosov Moscow State University Russia
| | - Vytas Švedas
- Belozersky Institute of Physicochemical Biology Lomonosov Moscow State University Russia
| |
Collapse
|
16
|
Cystathionine β-lyase is involved in d-amino acid metabolism. Biochem J 2018; 475:1397-1410. [PMID: 29592871 DOI: 10.1042/bcj20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine β-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine β-lyase is a multifunctional enzyme with three different activities.
Collapse
|
17
|
Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng 2018; 2:011501. [PMID: 31069285 PMCID: PMC6481699 DOI: 10.1063/1.4997367] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023] Open
Abstract
The catalytic properties of some selected enzymes have long been exploited to carry out efficient and cost-effective bioconversions in a multitude of research and industrial sectors, such as food, health, cosmetics, agriculture, chemistry, energy, and others. Nonetheless, for several applications, naturally occurring enzymes are not considered to be viable options owing to their limited stability in the required working conditions. Over the years, the quest for novel enzymes with actual potential for biotechnological applications has involved various complementary approaches such as mining enzyme variants from organisms living in extreme conditions (extremophiles), mimicking evolution in the laboratory to develop more stable enzyme variants, and more recently, using rational, computer-assisted enzyme engineering strategies. In this review, we provide an overview of the most relevant enzymes that are used for industrial applications and we discuss the strategies that are adopted to enhance enzyme stability and/or activity, along with some of the most relevant achievements. In all living species, many different enzymes catalyze fundamental chemical reactions with high substrate specificity and rate enhancements. Besides specificity, enzymes also possess many other favorable properties, such as, for instance, cost-effectiveness, good stability under mild pH and temperature conditions, generally low toxicity levels, and ease of termination of activity. As efficient natural biocatalysts, enzymes provide great opportunities to carry out important chemical reactions in several research and industrial settings, ranging from food to pharmaceutical, cosmetic, agricultural, and other crucial economic sectors.
Collapse
Affiliation(s)
- Federica Rigoldi
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Donini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alberto Redaelli
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via G. Pascoli 70/3, 20133 Milano, Italy
| | - Alfonso Gautieri
- Biomolecular Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
18
|
.Newton MS, Arcus VL, Gerth ML, Patrick WM. Enzyme evolution: innovation is easy, optimization is complicated. Curr Opin Struct Biol 2018; 48:110-116. [DOI: 10.1016/j.sbi.2017.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
19
|
Copley SD. Shining a light on enzyme promiscuity. Curr Opin Struct Biol 2017; 47:167-175. [DOI: 10.1016/j.sbi.2017.11.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/14/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
|
20
|
Rosenberg J, Yeak KC, Commichau FM. A two-step evolutionary process establishes a non-native vitamin B6 pathway in Bacillus subtilis. Environ Microbiol 2017; 20:156-168. [PMID: 29027347 DOI: 10.1111/1462-2920.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the most important form of vitamin B6 serves as a cofactor for many proteins. Two alternative pathways for de novo PLP biosynthesis are known: the short deoxy-xylulose-5-phosphate (DXP)-independent pathway, which is present in the Gram-positive model bacterium Bacillus subtilis and the longer DXP-dependent pathway, which has been intensively studied in the Gram-negative model bacterium Escherichia coli. Previous studies revealed that bacteria contain many promiscuous enzymes causing a so-called 'underground metabolism', which can be important for the evolution of novel pathways. Here, we evaluated the potential of B. subtilis to use a truncated non-native DXP-dependent PLP pathway from E. coli for PLP synthesis. Adaptive laboratory evolution experiments revealed that two non-native enzymes catalysing the last steps of the DXP-dependent PLP pathway and two genomic alterations are sufficient to allow growth of vitamin B6 auxotrophic bacteria as rapid as the wild type. Thus, the existence of an underground metabolism in B. subtilis facilitates the generation of a pathway for synthesis of PLP using parts of a non-native vitamin B6 pathway. The introduction of non-native enzymes into a metabolic network and rewiring of native metabolism could be helpful to generate pathways that might be optimized for producing valuable substances.
Collapse
Affiliation(s)
- Jonathan Rosenberg
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - KahYen C Yeak
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Seelig B. Multifunctional enzymes from reduced genomes - model proteins for simple primordial metabolism? Mol Microbiol 2017; 105:505-507. [PMID: 28665040 DOI: 10.1111/mmi.13742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 11/29/2022]
Abstract
Billions of years of evolution have yielded today's complex metabolic networks driven by efficient and highly specialized enzymes. In contrast, the metabolism of the earliest cellular life forms was likely much simpler with only a few enzymes of comparatively low activity. It has been speculated that these early enzymes had low specificities and in turn were able to perform multiple functions. In this issue of Molecular Microbiology, Ferla et al. describe examples of enzymes that catalyze chemically distinct reactions while using the same active site. Most importantly, the authors demonstrated that the comparatively weak activities of these multifunctional enzymes are each physiologically relevant. These findings contrast with simply promiscuous enzyme activities, which have been described numerous times but are not physiologically relevant. Ferla et al. elegantly combined initial bioinformatics searches for enzyme candidates with sound kinetic measurements, evolutionary considerations and even structural discussions. The phenomenon of multifunctionality appears to be a mechanism for bacteria with reduced genomes to compensate for their lack of certain enzymes. In the broader context of evolution, these organisms could be considered living model systems to study features of long-extinct early cellular life.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
22
|
Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function. J Biol Chem 2017; 292:13986-14002. [PMID: 28696262 DOI: 10.1074/jbc.m117.777904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser84, the putative re-face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine-O-sulfate (∼1200-fold change in kcat/Km ratios) and l (l-THA; ∼5000-fold change in kcat/Km ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good kcat but high Km for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l-erythro-β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with Ki = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine-O-sulfate substrates and the l-erythro-β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in human serine racemase lowers the pKa of the Ser84re-face base.
Collapse
Affiliation(s)
- David L Nelson
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Greg A Applegate
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Matthew L Beio
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Danielle L Graham
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David B Berkowitz
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
23
|
Ferla MP, Brewster JL, Hall KR, Evans GB, Patrick WM. Primordial‐like enzymes from bacteria with reduced genomes. Mol Microbiol 2017. [DOI: 10.1111/mmi.13737] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Matteo P. Ferla
- Department of BiochemistryUniversity of OtagoDunedin New Zealand
| | - Jodi L. Brewster
- Department of BiochemistryUniversity of OtagoDunedin New Zealand
| | - Kelsi R. Hall
- Department of BiochemistryUniversity of OtagoDunedin New Zealand
| | - Gary B. Evans
- Ferrier Research InstituteVictoria UniversityLower Hutt New Zealand
| | - Wayne M. Patrick
- Department of BiochemistryUniversity of OtagoDunedin New Zealand
| |
Collapse
|
24
|
Awad R, Gans P, Reiser JB. Structural insights into the substrate recognition and reaction specificity of the PLP-dependent fold-type I isoleucine 2-epimerase from Lactobacillus buchneri. Biochimie 2017; 137:165-173. [DOI: 10.1016/j.biochi.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 02/02/2023]
|
25
|
Robles-Martinez L, Mendez TL, Apodaca J, Das S. Glucosylceramide transferase in Giardia preferentially catalyzes the synthesis of galactosylceramide during encystation. Mol Biochem Parasitol 2016; 211:75-83. [PMID: 27840079 DOI: 10.1016/j.molbiopara.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022]
Abstract
The stage differentiation from trophozoite to cyst (i.e., encystation) is an essential step for Giardia to survive outside its human host and spread the infection via the fecal-oral route. We have previously shown that Giardia expresses glucosylceramide transferase 1 (GlcT1) enzyme, the activity of which is elevated during encystation. We have also reported that blocking the activity of gGlcT1 interferes with the biogenesis of encystation-specific vesicles (ESVs) and cyst viability in Giardia. To further understand the role of this enzyme and how it regulates encystation, we overexpressed, knocked down, and rescued the giardial GlcT1 (gGlcT1) gene and measured its enzymatic activity in live parasites as well as in isolated membrane fractions using NBD-ceramide and UDP-glucose or UDP-galactose. We observed that gGlcT1 is able to catalyze the synthesis of both glucosylceramide (GlcCer) and galactosylceramide (GalCer), however the synthesis of GalCer is 2-3 fold higher than of GlcCer. Although both activities follow Michaelis-Menten kinetics, the bindings of UDP-glucose and UDP-galactose with the enzyme appear to be non-competitive and independent of each other. The modulation of gGlcT1 synthesis concomitantly influenced the expression cyst-wall protein (CWP) and overall encystation. We propose that gGlcT1 is a unique enzyme and that Giardia uses this enzyme to synthesize both GlcCer and GalCer to facilitate the process of encystation/cyst production.
Collapse
Affiliation(s)
- Leobarda Robles-Martinez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Tavis L Mendez
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Jennifer Apodaca
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| | - Siddhartha Das
- Infectious Disease and Immunology Cluster, Border Biomedical Research Center (BBRC), University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA; Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519/USA, Tel: (915) 747-6896∥
| |
Collapse
|