1
|
Li Y, Zhao Y, He Y, Liu F, Xia L, Liu K, Zhang M, Chen K. New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction. J Biol Chem 2024; 300:107762. [PMID: 39265663 PMCID: PMC11490884 DOI: 10.1016/j.jbc.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
ASAP1 and its paralog ASAP2 belong to a PI4,5P2-dependent Arf GTPase-activating protein (Arf-GAP) family capable of modulating membrane and cytoskeletal dynamics. ASAPs regulate cell adhesive structures such as invadosomes and focal adhesions during cell attachment and migration. Malfunctioning of ASAP1 has been implicated in the malignant phenotypes of various cancers. Here, we discovered that the SH3 domain of ASAP1 or ASAP2 specifically binds to a 12-residue, positively charged peptide fragment from the 440 kDa giant ankyrin-B, a neuronal axon specific scaffold protein. The high-resolution structure of the ASAP1-SH3 domain in complex with the gAnkB peptide revealed a noncanonical SH3-ligand binding mode with high affinity and specificity. Structural analysis of the complex readily uncovered a consensus ASAP1-SH3 binding motif, which allowed the discovery of a number of previously unknown binding partners of ASAP1-SH3 including Clasp1/Clasp2, ALS2, β-Pix, DAPK3, PHIP, and Limk1. Fittingly, these newly identified ASAP1 binding partners are primarily key modulators of the cytoskeletons. Finally, we designed a cell-penetrating, highly potent ASAP1 SH3 domain binding peptide with a Kd ∼7 nM as a tool for studying the roles of ASAPs in different cellular processes.
Collapse
Affiliation(s)
- Yubing Li
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yipeng Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yaojun He
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Fang Liu
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Lu Xia
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Kai Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Keyu Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
2
|
Mai X, Shang J, Chen Q, Gu S, Hong Y, Zhou J, Zhang M. Endophilin A2 protects against renal fibrosis by targeting TGF-β/Smad signaling. FASEB J 2022; 36:e22603. [PMID: 36259445 DOI: 10.1096/fj.202101769r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Renal fibrosis underlies all forms of end-stage kidney disease. Endophilin A2 (EndoA2) plays a role in nephrotic syndrome; however, its effect on renal fibrosis remains unknown. Here, we demonstrate that EndoA2 protects against kidney interstitial fibrosis via the transforming growth factor-β (TGF-β)/Smad signaling pathway. Mouse kidneys with fibrosis or kidney biopsy specimens from patients with fibrotic nephropathy had lower levels of EndoA2 protein expression than that in kidneys without fibrosis. In vivo overexpression of EndoA2 with the endophilin A2 transgene (EndoA2Tg ) notably prevented renal fibrosis, decreased the protein expression of profibrotic molecules, suppressed tubular injury, and reduced apoptotic tubular cells in the obstructed kidney cortex of mice with unilateral ureteral obstruction (UUO). In vivo and in vitro overexpression of EndoA2 markedly inhibited UUO- or TGF-β1-induced phosphorylation of Smad2/3 and tubular epithelial cells dedifferentiation. Furthermore, EndoA2 was co-immunoprecipitated with the type II TGF-β receptor (TβRII), thus inhibiting the binding of the type I TGF-β receptor (TβRI) to TβRII. These findings indicate that EndoA2 mitigates renal fibrosis, at least partially, via modulating the TGF-β/Smad signaling. Targeting EndoA2 may be a new potential therapeutic strategy for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyi Mai
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qiuyuan Chen
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Gu
- Department of Organ Transplantation, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Minzhou Zhang
- Intensive Care Research Team of Traditional Chinese Medicine & AMI Key Lab of Chinese Medicine in Guangzhou, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
4
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
5
|
Potjewyd FM, Axtman AD. Exploration of Aberrant E3 Ligases Implicated in Alzheimer's Disease and Development of Chemical Tools to Modulate Their Function. Front Cell Neurosci 2021; 15:768655. [PMID: 34867205 PMCID: PMC8637409 DOI: 10.3389/fncel.2021.768655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
The Ubiquitin Proteasome System (UPS) is responsible for the degradation of misfolded or aggregated proteins via a multistep ATP-dependent proteolytic mechanism. This process involves a cascade of ubiquitin (Ub) transfer steps from E1 to E2 to E3 ligase. The E3 ligase transfers Ub to a targeted protein that is brought to the proteasome for degradation. The inability of the UPS to remove misfolded or aggregated proteins due to UPS dysfunction is commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD). UPS dysfunction in AD drives disease pathology and is associated with the common hallmarks such as amyloid-β (Aβ) accumulation and tau hyperphosphorylation, among others. E3 ligases are key members of the UPS machinery and dysfunction or changes in their expression can propagate other aberrant processes that accelerate AD pathology. The upregulation or downregulation of expression or activity of E3 ligases responsible for these processes results in changes in protein levels of E3 ligase substrates, many of which represent key proteins that propagate AD. A powerful way to better characterize UPS dysfunction in AD and the role of individual E3 ligases is via the use of high-quality chemical tools that bind and modulate specific E3 ligases. Furthermore, through combining gene editing with recent advances in 3D cell culture, in vitro modeling of AD in a dish has become more relevant and possible. These cell-based models of AD allow for study of specific pathways and mechanisms as well as characterization of the role E3 ligases play in driving AD. In this review, we outline the key mechanisms of UPS dysregulation linked to E3 ligases in AD and highlight the currently available chemical modulators. We present several key approaches for E3 ligase ligand discovery being employed with respect to distinct classes of E3 ligases. Where possible, specific examples of the use of cultured neurons to delineate E3 ligase biology have been captured. Finally, utilizing the available ligands for E3 ligases in the design of proteolysis targeting chimeras (PROTACs) to degrade aberrant proteins is a novel strategy for AD, and we explore the prospects of PROTACs as AD therapeutics.
Collapse
|
6
|
Jin L, Bo XM. Neuroprotection of sevoflurane against ischemia/reperfusion-induced brain injury through inhibiting GluN2A/GluN2B-PSD-95-MLK3 module. Exp Brain Res 2021; 239:2701-2709. [PMID: 34223957 DOI: 10.1007/s00221-021-06157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
To investigate the role of GluN2A and GluN2B in neuroprotective effect of sevoflurane preconditioning against cerebral ischemia-reperfusion injury (CIRI). Rats were randomly divided into five groups as follows: control, ischemia-reperfusion (I/R) 6 h, sevoflurane preconditioning (SP), SP + amantadine, SP + NMDA. Immunoblot and immunoprecipitation were used to detect the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the expression of phosphorylation of MLK3, MKK7 and JNK3. Cresyl violet staining was employed to analyse neuronal injury in rat hippocampal CA1 subfields. Sevoflurane preconditioning inhibits the tyrosine phosphorylation of GluN2A/GluN2B, the interaction of GluN2A/GluN2B-PSD-95-MLK3 and the phosphorylation of MLK3, MKK7 and JNK3 in rat hippocampus. An N-methyl-D-aspartate receptor (NMDAR) antagonist amantadine reversed the MLK3-MKK7- JNK3 signal events. Such reversion was also realized by NMDA (60 and 80 nmol) and low doses of NMDA (0-40 nmol) could not change the inhibitory effect of sevoflurane preconditioning on MLK3-MKK7-JNK3 signal events. Finally, Cresyl violet staining also confirmed that low dose of NMDA reduced neuronal loss in rat hippocampal CA1 subfields. Sevoflurane preconditioning provides neuroprotection against CIRI by inhibiting NMDAR over-activation.
Collapse
Affiliation(s)
- Lei Jin
- Medical Biological Experiment Credit Center, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiu Mei Bo
- Medical Biological Experiment Credit Center, Basic Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
7
|
Mathieu NA, Levin RH, Spratt DE. Exploring the Roles of HERC2 and the NEDD4L HECT E3 Ubiquitin Ligase Subfamily in p53 Signaling and the DNA Damage Response. Front Oncol 2021; 11:659049. [PMID: 33869064 PMCID: PMC8044464 DOI: 10.3389/fonc.2021.659049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular homeostasis is governed by the precise expression of genes that control the translation, localization, and termination of proteins. Oftentimes, environmental and biological factors can introduce mutations into the genetic framework of cells during their growth and division, and these genetic abnormalities can result in malignant transformations caused by protein malfunction. For example, p53 is a prominent tumor suppressor protein that is capable of undergoing more than 300 posttranslational modifications (PTMs) and is involved with controlling apoptotic signaling, transcription, and the DNA damage response (DDR). In this review, we focus on the molecular mechanisms and interactions that occur between p53, the HECT E3 ubiquitin ligases WWP1, SMURF1, HECW1 and HERC2, and other oncogenic proteins in the cell to explore how irregular HECT-p53 interactions can induce tumorigenesis.
Collapse
Affiliation(s)
- Nicholas A Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Rafael H Levin
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, United States
| |
Collapse
|
8
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
9
|
Antoine M, Vandenbroere I, Ghosh S, Erneux C, Pirson I. IRSp53 is a novel interactor of SHIP2: A role of the actin binding protein Mena in their cellular localization in breast cancer cells. Cell Signal 2020; 73:109692. [PMID: 32535200 DOI: 10.1016/j.cellsig.2020.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
A tight control of the machineries regulating membrane bending and actin dynamics is very important for the generation of membrane protrusions, which are crucial for cell migration and invasion. Protein/protein and protein/phosphoinositides complexes assemble and disassemble to coordinate these mechanisms, the scaffold properties of the involved proteins playing a prominent role in this organization. The PI 5-phosphatase SHIP2 is a critical enzyme modulating PI(3,4,5)P3, PI(4,5)P2 and PI(3,4)P2 content in the cell. The scaffold properties of SHIP2 contribute to the specific targeting or retention of the protein in particular subcellular domains. Here, we identified IRSp53 as a new binding interactor of SHIP2 proline-rich domain. Both proteins are costained in HEK293T cells protrusions, upon transfection. We showed that the SH3-binding polyproline motif recognized by IRSp53 in SHIP2 is different from the regions targeted by other PRR binding partners i.e., CIN85, ITSN or even Mena a common interactor of both SHIP2 and IRSp53. We presented evidence that IRSp53 phosphorylation on S366 did not influence its interaction with SHIP2 and that Mena is not necessary for the association of SHIP2 with IRSp53 in MDA-MB-231 cells. The absence of Mena in MDA-MB-231 cells decreased the intracellular content in F-actin and modified the subcellular localization of SHIP2 and IRSp53 by increasing their relative content at the plasma membrane. Together our data suggest that SHIP2, through interaction with the cell protrusion regulators IRSp53 and Mena, participate to the formation of multi-protein complexes. This ensures the appropriate modulations of PIs which is important for regulation of membrane dynamics.
Collapse
Affiliation(s)
- Mathieu Antoine
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium.
| | - Isabelle Vandenbroere
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium
| | - Somadri Ghosh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium.
| |
Collapse
|
10
|
Tang W, Zhao Z, Wang C, Ye T, Yang B. Molecular design and optimization of hepatic cancer SLP76-derived PLCγ1 SH3-binding peptide with the systematic N-substitution of peptide PXXP motif. J Mol Recognit 2019; 32:e2806. [PMID: 31397025 DOI: 10.1002/jmr.2806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
Abstract
The phospholipase Cγ1 (PLCγ1) is essential for T-cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP-containing decapeptide segment (185 QPPVPPQRPM194 , termed as SLP76185-194 peptide) of adaptor protein SLP76 following T-cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185-194 PXXP motif with nonnatural N-substituted amino acids, as the proline is the only endogenous N-substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate-sized N-substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N-substituted peptides as well as native SLP76185-194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence-based assays. Two N-substituted peptides, SLP76185-194 (N-Leu187/N-Gln190) and SLP76185-194 (N-Thr187/N-Gln190), are designed to have high potency (Kd = 0.67 ± 0.18 and 1.7 ± 0.3 μM, respectively), with affinity improvement by, respectively, 8.5-fold and 3.4-fold relative to native peptide (Kd = 5.7 ± 1.2 μM).
Collapse
Affiliation(s)
- Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Ye
- Department of Oncology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Mol Neurodegener 2019; 14:20. [PMID: 31159836 PMCID: PMC6547588 DOI: 10.1186/s13024-019-0323-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence supports that cellular dysregulations in the degradative routes contribute to the initiation and progression of neurodegenerative diseases, including Alzheimer's disease. Autophagy and endolysosomal homeostasis need to be maintained throughout life as they are major cellular mechanisms involved in both the production of toxic amyloid peptides and the clearance of misfolded or aggregated proteins. As such, alterations in endolysosomal and autophagic flux, as a measure of degradation activity in these routes or compartments, may directly impact as well on disease-related mechanisms such as amyloid-β clearance through the blood-brain-barrier and the interneuronal spreading of amyloid-β and/or Tau seeds, affecting synaptic function, plasticity and metabolism. The emerging of several genetic risk factors for late-onset Alzheimer's disease that are functionally related to endocytic transport regulation, including cholesterol metabolism and clearance, supports the notion that in particular the autophagy/lysosomal flux might become more vulnerable during ageing thereby contributing to disease onset. In this review we discuss our current knowledge of the risk genes APOE4, BIN1, CD2AP, PICALM, PLD3 and TREM2 and their impact on endolysosomal (dys)regulations in the light of late-onset Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Zoë P. Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, Gasthuisberg, O&N4, Rm. 7.159, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
12
|
Liu D, Li G, Zuo Y. Function determinants of TET proteins: the arrangements of sequence motifs with specific codes. Brief Bioinform 2019; 20:1826-1835. [DOI: 10.1093/bib/bby053] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Abstract
The ten-eleven translocation (TET) proteins play a crucial role in promoting locus-specific reversal of DNA methylation, a type of chromatin modification. Considerable evidences have demonstrated that the sequence motifs with specific codes are important to determine the functions of domains and active sites. Here, we surveyed major studies and reviews regarding the multiple functions of the TET proteins and established the patterns of the motif arrangements that determine the functions of TET proteins. First, we summarized the functional sequence basis of TET proteins and identified the new functional motifs based on the phylogenetic relationship. Next, we described the sequence characteristics of the functional motifs in detail and provided an overview of the relationship between the sequence motifs and the functions of TET proteins, including known functions and potential functions. Finally, we highlighted that sequence motifs with diverse post-translational modifications perform unique functions, and different selection pressures lead to different arrangements of sequence motifs, resulting in different paralogs and isoforms.
Collapse
Affiliation(s)
- Dongyang Liu
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- The State key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
13
|
Lorenz S. Structural mechanisms of HECT-type ubiquitin ligases. Biol Chem 2018; 399:127-145. [PMID: 29016349 DOI: 10.1515/hsz-2017-0184] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Ubiquitin ligases (E3 enzymes) transfer ubiquitin from ubiquitin-conjugating (E2) enzymes to target proteins. By determining the selection of target proteins, modification sites on those target proteins, and the types of ubiquitin modifications that are formed, E3 enzymes are key specificity factors in ubiquitin signaling. Here, I summarize our knowledge of the structural mechanisms in the HECT E3 subfamily, many members of which play important roles in human disease. I discuss interactions of the conserved HECT domain with E2 enzymes, ubiquitin and target proteins, as well as macromolecular interactions with regulatory functions. While we understand individual steps in the catalytic cycle of HECT E3 enzymes on a structural level, this review also highlights key aspects that have yet to be elucidated. For instance, it remains unclear how diverse target proteins are presented to the catalytic center and how certain HECT E3 enzymes achieve specificity in ubiquitin linkage formation. The structural and functional properties of the N-terminal regions of HECT E3 enzymes that likely act as signaling hubs are also largely unknown. Structural insights into these aspects may open up routes for a therapeutic intervention with specific HECT E3 functions in distinct pathophysiological settings.
Collapse
Affiliation(s)
- Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| |
Collapse
|