1
|
Cao MH, Zou MM, Liu LL, Dong SJ, Huang MQ, Zheng JH, Li RN, Cui JD, Peng L. Sast1-mediated manifold effects inhibit Plutella xylostella fertility. PEST MANAGEMENT SCIENCE 2024; 80:2596-2609. [PMID: 38252701 DOI: 10.1002/ps.7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Plutella xylostella (Linnaeus) is a destructive pest of cruciferous crops due to its strong reproductive capacity and extensive resistance to pesticides. Seminal fluid proteins (SFPs) are the main effective factors that determine the reproductive physiology and behaviour of both sexes. Although an increasing number of SFPs have been identified, the effects of astacins in SFPs on agricultural pests have not yet been reported. Here, we elucidated the mechanisms by which Sast1 (seminal astacin 1) regulates the fertility of Plutella xylostella (L.). RESULTS PxSast1 was specifically expressed in the testis and accesssory gland. CRISPR/Cas9-induced PxSast1 knockout successfully constructed two homozygous mutant strains. Sast1 impaired the fertility of P. xylostella by separately regulating the reproductive capacity of males and females. Loss of PxSast1, on the one hand, significantly decreased the ability of males to mate and fertilize, mainly manifested as shortened mating duration, reduced mating competitiveness and decreased eupyrene sperm production; on the other hand, it significantly inhibited the expression of chorion genes in females, resulting in oogenesis deficits. Simultaneously, for mated females, the differentially expressed genes in signalling pathways related to oogenesis and chorion formation were significantly enriched after PxSast1 knockout. CONCLUSION These analyses of the functions of PxSast1 as the regulator of spermatogenesis and oogenesis establish its importance in the fertility process of P. xylostella, as well as its potential as a promising target for genetic regulation-based pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min-Hui Cao
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ming-Min Zou
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Li Liu
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Jie Dong
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meng-Qi Huang
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun-Hao Zheng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruo-Nan Li
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin-Dong Cui
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Peng
- State Key Laboratory of Ecological Pest Control for Fujian-Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Fujian Provincial Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Dai XY, Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Liu DQ, Zhou YQ, Mei W. Matrix metalloproteinases as attractive therapeutic targets for chronic pain: A narrative review. Int J Biol Macromol 2024; 261:129619. [PMID: 38272407 DOI: 10.1016/j.ijbiomac.2024.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Chronic pain constitutes an abnormal pain state that detrimentally affects the quality of life, daily activities, occupational performance, and stability of mood. Despite the prevalence of chronic pain, effective drugs with potent abirritation and minimal side effects remain elusive. Substantial studies have revealed aberrant activation of the matrix metalloproteinases (MMPs) in multiple chronic pain models. Additionally, emerging evidence has demonstrated that the downregulation of MMPs can alleviate chronic pain in diverse animal models, underscoring the unique and crucial role of MMPs in different stages and types of chronic pain. This review delves into the mechanistic insights and roles of MMPs in modulating chronic pain. The aberrant activation of MMPs has been linked to neuropathic pain through mechanisms involving myelin abnormalities in peripheral nerve and spinal dorsal horn (SDH), hyperexcitability of dorsal root ganglion (DRG) neurons, activation of N-methyl-d-aspartate receptors (NMDAR) and Ca2+-dependent signals, glial cell activation, and proinflammatory cytokines release. Different MMPs also contribute significantly to inflammatory pain and cancer pain. Furthermore, we summarized the substantial therapeutic potential of MMP pharmacological inhibitors across different types of chronic pain. Overall, our findings underscore the promising therapeutic prospects of MMPs targeting for managing chronic pain.
Collapse
Affiliation(s)
- Xin-Yi Dai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Lin Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China.
| |
Collapse
|
3
|
Gomis-Rüth FX, Stöcker W. Structural and evolutionary insights into astacin metallopeptidases. Front Mol Biosci 2023; 9:1080836. [PMID: 36685277 PMCID: PMC9848320 DOI: 10.3389/fmolb.2022.1080836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a "Met-turn" methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors.
Collapse
Affiliation(s)
- F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona, Catalonia, Spain,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| | - Walter Stöcker
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz (JGU), Mainz, Germany,*Correspondence: F. Xavier Gomis-Rüth, ; Walter Stöcker,
| |
Collapse
|
4
|
Guevara T, Rodríguez-Banqueri A, Stöcker W, Becker-Pauly C, Gomis-Rüth FX. Zymogenic latency in an ∼250-million-year-old astacin metallopeptidase. Acta Crystallogr D Struct Biol 2022; 78:1347-1357. [PMID: 36322418 PMCID: PMC9629494 DOI: 10.1107/s2059798322009688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/02/2022] [Indexed: 01/05/2023] Open
Abstract
The horseshoe crab Limulus polyphemus is one of few extant Limulus species, which date back to ∼250 million years ago under the conservation of a common Bauplan documented by fossil records. It possesses the only proteolytic blood-coagulation and innate immunity system outside vertebrates and is a model organism for the study of the evolution and function of peptidases. The astacins are a family of metallopeptidases that share a central ∼200-residue catalytic domain (CD), which is found in >1000 species across holozoans and, sporadically, bacteria. Here, the zymogen of an astacin from L. polyphemus was crystallized and its structure was solved. A 34-residue, mostly unstructured pro-peptide (PP) traverses, and thus blocks, the active-site cleft of the CD in the opposite direction to a substrate. A central `PP motif' (F35-E-G-D-I39) adopts a loop structure which positions Asp38 to bind the catalytic metal, replacing the solvent molecule required for catalysis in the mature enzyme according to an `aspartate-switch' mechanism. Maturation cleavage of the PP liberates the cleft and causes the rearrangement of an `activation segment'. Moreover, the mature N-terminus is repositioned to penetrate the CD moiety and is anchored to a buried `family-specific' glutamate. Overall, this mechanism of latency is reminiscent of that of the other three astacins with known zymogenic and mature structures, namely crayfish astacin, human meprin β and bacterial myroilysin, but each shows specific structural characteristics. Remarkably, myroilysin lacks the PP motif and employs a cysteine instead of the aspartate to block the catalytic metal.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona Science Park, Baldiri Reixac 15–21, Helix Building, 08028 Barcelona, Catalonia, Spain
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona Science Park, Baldiri Reixac 15–21, Helix Building, 08028 Barcelona, Catalonia, Spain
| | - Walter Stöcker
- Institut für Molekulare Physiologie (IMP), Johannes-Gutenberg Universität Mainz (JGU), Johann-Joachim-Becher-Weg 7, 55128 Mainz, Germany
| | - Christoph Becker-Pauly
- Biochemical Institute, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 9, 24118 Kiel, Germany
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), Higher Scientific Research Council (CSIC), Barcelona Science Park, Baldiri Reixac 15–21, Helix Building, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
6
|
Ran T, Li W, Sun B, Xu M, Qiu S, Xu DQ, He J, Wang W. Crystal structure of mature myroilysin and implication for its activation mechanism. Int J Biol Macromol 2020; 156:1556-1564. [DOI: 10.1016/j.ijbiomac.2019.11.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
|
7
|
Guevara T, Rodriguez-Banqueri A, Ksiazek M, Potempa J, Gomis-Rüth FX. Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases. IUCRJ 2020; 7:18-29. [PMID: 31949901 PMCID: PMC6949598 DOI: 10.1107/s2052252519013848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 05/23/2023]
Abstract
Tannerella forsythia is an oral dysbiotic periodontopathogen involved in severe human periodontal disease. As part of its virulence factor armamentarium, at the site of colonization it secretes mirolysin, a metallopeptidase of the unicellular pappalysin family, as a zymogen that is proteolytically auto-activated extracellularly at the Ser54-Arg55 bond. Crystal structures of the catalytically impaired promirolysin point mutant E225A at 1.4 and 1.6 Å revealed that latency is exerted by an N-terminal 34-residue pro-segment that shields the front surface of the 274-residue catalytic domain, thus preventing substrate access. The catalytic domain conforms to the metzincin clan of metallopeptidases and contains a double calcium site, which acts as a calcium switch for activity. The pro-segment traverses the active-site cleft in the opposite direction to the substrate, which precludes its cleavage. It is anchored to the mature enzyme through residue Arg21, which intrudes into the specificity pocket in cleft sub-site S1'. Moreover, residue Cys23 within a conserved cysteine-glycine motif blocks the catalytic zinc ion by a cysteine-switch mechanism, first described for mammalian matrix metallopeptidases. In addition, a 1.5 Å structure was obtained for a complex of mature mirolysin and a tetradecapeptide, which filled the cleft from sub-site S1' to S6'. A citrate molecule in S1 completed a product-complex mimic that unveiled the mechanism of substrate binding and cleavage by mirolysin, the catalytic domain of which was already preformed in the zymogen. These results, including a preference for cleavage before basic residues, are likely to be valid for other unicellular pappalysins derived from archaea, bacteria, cyanobacteria, algae and fungi, including archetypal ulilysin from Methanosarcina acetivorans. They may further apply, at least in part, to the multi-domain orthologues of higher organisms.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Arturo Rodriguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| | - Miroslaw Ksiazek
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40202, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40202, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30-387, Poland
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Arolas JL, Goulas T, Cuppari A, Gomis-Rüth FX. Multiple Architectures and Mechanisms of Latency in Metallopeptidase Zymogens. Chem Rev 2018; 118:5581-5597. [PMID: 29775286 DOI: 10.1021/acs.chemrev.8b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metallopeptidases cleave polypeptides bound in the active-site cleft of catalytic domains through a general base/acid mechanism. This involves a solvent molecule bound to a catalytic zinc and general regulation of the mechanism through zymogen-based latency. Sixty reported structures from 11 metallopeptidase families reveal that prosegments, mostly N-terminal of the catalytic domain, block the cleft regardless of their size. Prosegments may be peptides (5-14 residues), which are only structured within the zymogens, or large moieties (<227 residues) of one or two folded domains. While some prosegments globally shield the catalytic domain through a few contacts, others specifically run across the cleft in the same or opposite direction as a substrate, making numerous interactions. Some prosegments block the zinc by replacing the solvent with particular side chains, while others use terminal α-amino or carboxylate groups. Overall, metallopeptidase zymogens employ disparate mechanisms that diverge even within families, which supports that latency is less conserved than catalysis.
Collapse
Affiliation(s)
- Joan L Arolas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Theodoros Goulas
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - Anna Cuppari
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Structural Biology Unit ("María-de-Maeztu" Unit of Excellence) , Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas , Barcelona Science Park, c/Baldiri Reixac 15-21 , 08028 Barcelona , Catalonia , Spain
| |
Collapse
|
9
|
Haas J, Barbato A, Behringer D, Studer G, Roth S, Bertoni M, Mostaguir K, Gumienny R, Schwede T. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins 2017; 86 Suppl 1:387-398. [PMID: 29178137 DOI: 10.1002/prot.25431] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Every second year, the community experiment "Critical Assessment of Techniques for Structure Prediction" (CASP) is conducting an independent blind assessment of structure prediction methods, providing a framework for comparing the performance of different approaches and discussing the latest developments in the field. Yet, developers of automated computational modeling methods clearly benefit from more frequent evaluations based on larger sets of data. The "Continuous Automated Model EvaluatiOn (CAMEO)" platform complements the CASP experiment by conducting fully automated blind prediction assessments based on the weekly pre-release of sequences of those structures, which are going to be published in the next release of the PDB Protein Data Bank. CAMEO publishes weekly benchmarking results based on models collected during a 4-day prediction window, on average assessing ca. 100 targets during a time frame of 5 weeks. CAMEO benchmarking data is generated consistently for all participating methods at the same point in time, enabling developers to benchmark and cross-validate their method's performance, and directly refer to the benchmarking results in publications. In order to facilitate server development and promote shorter release cycles, CAMEO sends weekly email with submission statistics and low performance warnings. Many participants of CASP have successfully employed CAMEO when preparing their methods for upcoming community experiments. CAMEO offers a variety of scores to allow benchmarking diverse aspects of structure prediction methods. By introducing new scoring schemes, CAMEO facilitates new development in areas of active research, for example, modeling quaternary structure, complexes, or ligand binding sites.
Collapse
Affiliation(s)
- Jürgen Haas
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Alessandro Barbato
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Dario Behringer
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Steven Roth
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Martino Bertoni
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Khaled Mostaguir
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Rafal Gumienny
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Computational Structural Biology, Basel, Switzerland
| |
Collapse
|