1
|
Gandhi N, Omer S, Harrison RE. In Vitro Cell Culture Model for Osteoclast Activation during Estrogen Withdrawal. Int J Mol Sci 2024; 25:6134. [PMID: 38892322 PMCID: PMC11173070 DOI: 10.3390/ijms25116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Estrogen (17β-estradiol) deficiency post-menopause alters bone homeostasis whereby bone resorption by osteoclasts exceeds bone formation by osteoblasts, leading to osteoporosis in females. We established an in vitro model to examine the consequences of estrogen withdrawal (E2-WD) on osteoclasts derived from the mouse macrophage RAW 264.7 cell line and utilized it to investigate the mechanism behind the enhanced osteoclast activity post-menopause. We found that a greater population of osteoclasts that underwent E2-WD contained a podosome belt necessary for osteoclasts to adhere and resorb bone and possessed elevated resorptive activity compared to osteoclasts exposed to estrogen (E2) continuously. Our results show that compared to osteoclasts that received E2 continuously, those that underwent E2-WD had a faster rate of microtubule (MT) growth, reduced RhoA activation, and shorter podosome lifespan. Thus, altered podosome and MT dynamics induced by the withdrawal of estrogen supports podosome belt assembly/stability in osteoclasts, which may explain their enhanced bone resorption activity.
Collapse
Affiliation(s)
- Nisha Gandhi
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| | - Rene E. Harrison
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
2
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Shen Y, Chen Y, Lin Y, Li Y, Liu P, Zhang B, Wang Y, Chan KC, Mak NK, Kahn M, Qi RZ, Yang H. CDK5RAP2 is a Wnt target gene and promotes stemness and progression of oral squamous cell carcinoma. Cell Death Dis 2023; 14:107. [PMID: 36774351 PMCID: PMC9922250 DOI: 10.1038/s41419-023-05652-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
In oral squamous cell carcinoma (OSCC), a highly aggressive and frequently lethal malignancy, the role and action mechanism of the microtubule regulatory protein CDK5RAP2 have not been fully understood. Here, we show that CDK5RAP2 is highly expressed in OSCC and its expression correlates with clinical stage and lymph node metastasis of the disease. The expression of CDK5RAP2 is regulated by the Wnt signaling pathway. Depletion of CDK5RAP2 inhibits the tumorigenesis and migration of OSCC cells and alters the OSCC cancer stem (-like) cell (CSC) signature. Notably, suppression of CDK5RAP2 expression disrupts spindle orientation during mitosis. Collectively, these results identify CDK5RAP2 as a potential CSC marker and reveal a mechanism that controls the CSC population in OSCC.
Collapse
Affiliation(s)
- Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Yicun Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - Pengfei Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Biru Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
- Department of Stomatology, Shenzhen Luohu People's Hospital, Guangdong, China
| | - Yufan Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China
| | - King-Chi Chan
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China
| | - Nai-Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, Duarte, CA, USA
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China.
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital; Guangdong Provincial High-level Clinical Key Specialty; Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment; The Institute of Stomatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, China.
| |
Collapse
|
4
|
Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V. SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophys J 2021; 120:2019-2029. [PMID: 33737159 DOI: 10.1016/j.bpj.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.
Collapse
Affiliation(s)
- Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Pooja S Dharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Arya Krishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Renjith R Marira
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mahil Lambert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev 2021; 32:676-689. [PMID: 32317092 DOI: 10.1071/rd19234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
To explore the mechanisms leading to the poor quality of IVF blastocysts, the single-cell whole-genome methylation sequencing technique was used in this study to analyse the methylation patterns of bovine blastocysts derived from invivo, fresh (IVF) or vitrified (V_IVF) oocytes. Genome methylation levels of blastocysts in the IVF and V_IVF groups were significantly lower than those of the invivo group (P<0.05). In all, 1149 differentially methylated regions (DMRs) were identified between the IVF and invivo groups, 1578 DMRs were identified between the V_IVF and invivo groups and 151 DMRs were identified between the V_IVF and IVF groups. For imprinted genes, methylation levels of insulin-like growth factor 2 receptor (IGF2R) and protein phosphatase 1 regulatory subunit 9A (PPP1R9A) were lower in the IVF and V_IVF groups than in the invivo group, and the methylation level of paternally expressed 3 (PEG3) was lower in the V_IVF group than in the IVF and invivo groups. Genes with DMRs between the IVF and invivo and the V_IVF and IVF groups were primarily enriched in oocyte maturation pathways, whereas DMRs between the V_IVF and invivo groups were enriched in fertilisation and vitrification-vulnerable pathways. The results of this study indicate that differences in the methylation of critical DMRs may contribute to the differences in quality between invitro- and invivo-derived embryos.
Collapse
Affiliation(s)
- Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Jing-Jing Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Pei-Pei Zhang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Min Ruan
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Ming Lun Street, Kaifeng, Henan, 475004, PR China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Tong Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China; and Corresponding author.
| |
Collapse
|
6
|
Cep215 is essential for morphological differentiation of astrocytes. Sci Rep 2020; 10:17000. [PMID: 33046744 PMCID: PMC7550586 DOI: 10.1038/s41598-020-72728-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022] Open
Abstract
Cep215 (also known as Cdk5rap2) is a centrosome protein which is involved in microtubule organization. Cep215 is also placed at specific subcellular locations and organizes microtubules outside the centrosome. Here, we report that Cep215 is involved in morphological differentiation of astrocytes. Cep215 was specifically localized at the glial processes as well as centrosomes in developing astrocytes. Morphological differentiation of astrocytes was suppressed in the Cep215-deleted P19 cells and in the Cep215-depleted embryonic hippocampal culture. We confirm that the microtubule organizing function of Cep215 is critical for the glial process formation. However, Cep215 is not involved in the regulation of cell proliferation nor cell specification. Based on the results, we propose that Cep215 organizes microtubules for glial process formation during astrocyte differentiation.
Collapse
|
7
|
Nazgiewicz A, Atherton P, Ballestrem C. GAS2-like 1 coordinates cell division through its association with end-binding proteins. Sci Rep 2019; 9:5805. [PMID: 30967572 PMCID: PMC6456587 DOI: 10.1038/s41598-019-42242-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
Cell division involves the tightly coordinated rearrangement of actin and microtubules (MTs). We have previously shown that a member of the family of growth arrest-specific 2-like proteins, GAS2-like 1 (G2L1) regulates actin-MT crosstalk through its associations with plus-end microtubule tip-binding (EB) proteins. Here we show that G2L1 is involved in the regulation of cell division. We show that the depletion of G2L1 results in a reduction in the number of cells undergoing cell division and a significant proportion of those cells that do divide are either multinucleated, display deformed nuclei, or undergo cell division at a much slower rate. Exogenous expression of G2L1 mutants revealed that the association of G2L1 with EB1 is critical for regulated cell division and blocking this interaction inhibits cell division as observed in cells lacking G2L1. Taken together, our data suggest that G2L1 controls the precise regulation and successful progression of cell division through its binding to EB-proteins.
Collapse
Affiliation(s)
- Alicja Nazgiewicz
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
Serre L, Stoppin-Mellet V, Arnal I. Adenomatous Polyposis Coli as a Scaffold for Microtubule End-Binding Proteins. J Mol Biol 2019; 431:1993-2005. [PMID: 30959051 DOI: 10.1016/j.jmb.2019.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/17/2022]
Abstract
End-binding proteins (EBs), referred to as the core components of the microtubule plus-end tracking protein network, interact with the C-terminus of the adenomatous polyposis coli (APC) tumor suppressor. This interaction is disrupted in colon cancers expressing truncated APC. APC and EBs act in synergy to regulate microtubule dynamics during spindle formation, chromosome segregation and cell migration. Since EBs autonomously end-track microtubules and partially co-localize with APC at microtubule tips in cells, EBs have been proposed to direct APC to microtubule ends. However, the interdependency of EB and APC localization on microtubules remains elusive. Here, using in vitro reconstitution and single-molecule imaging, we have investigated the interplay between EBs and the C-terminal domain of APC (APC-C) on dynamic microtubules. Our results show that APC-C binds along the microtubule wall but does not accumulate at microtubule tips, even when EB proteins are present. APC-C was also found to enhance EB binding at the extremity of growing microtubules and on the microtubule lattice: APC-C promotes EB end-tracking properties by increasing the time EBs spend at microtubule growing ends, whereas a pool of EBs with a fast turnover accumulates along the microtubule surface. Overall, our results suggest that APC is a promoter of EB interaction with microtubules, providing molecular determinants to reassess the relationship between APC and EBs.
Collapse
Affiliation(s)
- Laurence Serre
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| | - Virginie Stoppin-Mellet
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France
| | - Isabelle Arnal
- Grenoble Institut des Neurosciences, INSERM U1216, Univ. Grenoble Alpes, Grenoble, 38000 France.
| |
Collapse
|