1
|
Cheng AY, Simmonds AJ. Peroxisome inter-organelle cooperation in Drosophila. Genome 2025; 68:1-12. [PMID: 39471439 DOI: 10.1139/gen-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.
Collapse
Affiliation(s)
- Andy Y Cheng
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Vaz FM, Ferdinandusse S, Salomons GS, Wanders RJA. Disorders of fatty acid homeostasis. J Inherit Metab Dis 2025; 48:e12734. [PMID: 38693715 PMCID: PMC11730842 DOI: 10.1002/jimd.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Humans derive fatty acids (FA) from exogenous dietary sources and/or endogenous synthesis from acetyl-CoA, although some FA are solely derived from exogenous sources ("essential FA"). Once inside cells, FA may undergo a wide variety of different modifications, which include their activation to their corresponding CoA ester, the introduction of double bonds, the 2- and ω-hydroxylation and chain elongation, thereby generating a cellular FA pool which can be used for the synthesis of more complex lipids. The biological properties of complex lipids are very much determined by their molecular composition in terms of the FA incorporated into these lipid species. This immediately explains the existence of a range of genetic diseases in man, often with severe clinical consequences caused by variants in one of the many genes coding for enzymes responsible for these FA modifications. It is the purpose of this review to describe the current state of knowledge about FA homeostasis and the genetic diseases involved. This includes the disorders of FA activation, desaturation, 2- and ω-hydroxylation, and chain elongation, but also the disorders of FA breakdown, including disorders of peroxisomal and mitochondrial α- and β-oxidation.
Collapse
Affiliation(s)
- Frédéric M. Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| | - Gajja S. Salomons
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Ronald J. A. Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic DiseasesEmma Children's Hospital, Amsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Inborn Errors of Metabolism, Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
| |
Collapse
|
3
|
Kors S, Schuster M, Maddison DC, Kilaru S, Schrader TA, Costello JL, Islinger M, Smith GA, Schrader M. New insights into the functions of ACBD4/5-like proteins using a combined phylogenetic and experimental approach across model organisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119843. [PMID: 39271061 DOI: 10.1016/j.bbamcr.2024.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Acyl-CoA binding domain-containing proteins (ACBDs) perform diverse but often uncharacterised functions linked to cellular lipid metabolism. Human ACBD4 and ACBD5 are closely related peroxisomal membrane proteins, involved in tethering of peroxisomes to the ER and capturing fatty acids for peroxisomal β-oxidation. ACBD5 deficiency causes neurological abnormalities including ataxia and white matter disease. Peroxisome-ER contacts depend on an ACBD4/5-FFAT motif, which interacts with ER-resident VAP proteins. As ACBD4/5-like proteins are present in most fungi and all animals, we combined phylogenetic analyses with experimental approaches to improve understanding of their evolution and functions. Notably, all vertebrates exhibit gene sequences for both ACBD4 and ACBD5, while invertebrates and fungi possess only a single ACBD4/5-like protein. Our analyses revealed alterations in domain structure and FFAT sequences, which help understanding functional diversification of ACBD4/5-like proteins. We show that the Drosophila melanogaster ACBD4/5-like protein possesses a functional FFAT motif to tether peroxisomes to the ER via Dm_Vap33. Depletion of Dm_Acbd4/5 caused peroxisome redistribution in wing neurons and reduced life expectancy. In contrast, the ACBD4/5-like protein of the filamentous fungus Ustilago maydis lacks a FFAT motif and does not interact with Um_Vap33. Loss of Um_Acbd4/5 resulted in an accumulation of peroxisomes and early endosomes at the hyphal tip. Moreover, lipid droplet numbers increased, and mitochondrial membrane potential declined, implying altered lipid homeostasis. Our findings reveal differences between tethering and metabolic functions of ACBD4/5-like proteins across evolution, improving our understanding of ACBD4/5 function in health and disease. The need for a unifying nomenclature for ACBD proteins is discussed.
Collapse
Affiliation(s)
- Suzan Kors
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Martin Schuster
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daniel C Maddison
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Sreedhar Kilaru
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Tina A Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gaynor A Smith
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Hasturk BA, Cinar Ç, Zubarioglu T, Tiryaki-Demir S, Cansever MS, Kiykim E, Kalaycı Yigin A, Yalcinkaya C, Aktuglu-Zeybek C. A Novel Homozygous ACBD5 Variant in an Emerging Peroxisomal Disorder Presenting with Retinal Dystrophy and a Review of the Literature. Mol Syndromol 2024; 15:232-239. [PMID: 38841324 PMCID: PMC11149960 DOI: 10.1159/000535534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 06/07/2024] Open
Abstract
Introduction Acyl-CoA binding domain containing 5 (ACBD5) deficiency is a newly defined inborn peroxisomal disorder with only 7 patients reported to date. Herein, we report a patient with ACBD5 deficiency who was diagnosed after a complicated diagnostic process. Case Presentation A 6-year-old male patient was admitted with complaints of neuromotor regression and visual disturbances. He had spastic paraparesis dominated with axial hypotonic posturing and horizontal nystagmus. His very-long-chain fatty acid levels were within normal ranges with a slightly elevated C26:0/C22:0 ratio. Brain magnetic resonance imaging revealed white matter involvement. Clinical exome sequencing displayed a novel homozygous intronic splice site variant (c.936 + 2T>G) in the ACBD5 (NM_145698.5) gene. Conclusion With this report, a novel variant in ACBD5 deficiency was described. Macular dystrophy was demonstrated with optical coherence tomography imaging for the first time in the literature in ACBD5 deficiency. In order to contribute to the knowledge about the clinical, biochemical, and genetic spectrum of ACBD5 deficiency, new patients need to be defined.
Collapse
Affiliation(s)
- Berfin Ayla Hasturk
- Department of Pediatrics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Çisem Cinar
- Department of Medical Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Tanyel Zubarioglu
- Department of Pediatrics, Division of Pediatric Nutrition and Metabolism, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Semra Tiryaki-Demir
- University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Department of Ophthalmology, Istanbul, Turkey
| | - Mehmet Serif Cansever
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ertugrul Kiykim
- Department of Pediatrics, Division of Pediatric Nutrition and Metabolism, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Aysel Kalaycı Yigin
- Department of Medical Genetics, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, Division of Pediatric Neurology, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| | - Cigdem Aktuglu-Zeybek
- Department of Pediatrics, Division of Pediatric Nutrition and Metabolism, Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
5
|
Xu M, Wang W, Cheng J, Qu H, Xu M, Wang L. Effects of mitochondrial dysfunction on cellular function: Role in atherosclerosis. Biomed Pharmacother 2024; 174:116587. [PMID: 38636397 DOI: 10.1016/j.biopha.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Atherosclerosis, an immunoinflammatory disease of medium and large arteries, is associated with life-threatening clinical events, such as acute coronary syndromes and stroke. Chronic inflammation and impaired lipoprotein metabolism are considered to be among the leading causes of atherosclerosis, while numerous risk factors, including arterial hypertension, diabetes mellitus, obesity, and aging, can contribute to the development of the disease. In recent years, emerging evidence has underlined the key role of mitochondrial dysfunction in the pathogenesis of atherosclerosis. Mitochondrial dysfunction is believed to result in an increase in reactive oxygen species, leading to oxidative stress, chronic inflammation, and intracellular lipid deposition, all of which can contribute to the pathogenesis of atherosclerosis. Critical cells, including endothelial cells, vascular smooth muscle cells, and macrophages, play an important role in atherosclerosis. Mitochondrial function is also involved in maintaining the normal function of these cells. To better understand the relationship between mitochondrial dysfunction and atherosclerosis, this review summarizes the findings of recent studies and discusses the role of mitochondrial dysfunction in the risk factors and critical cells of atherosclerosis. FACTS: OPEN QUESTIONS.
Collapse
Affiliation(s)
- Minwen Xu
- Clinical Skills Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Wenjun Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingpei Cheng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China
| | - Hongen Qu
- Gannan Normal University, Ganzhou 341000, China.
| | - Minjuan Xu
- Department of Obstetrics and Gynecology, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Liefeng Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Basic Medical College, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Granadeiro L, Zarralanga VE, Rosa R, Franquinho F, Lamas S, Brites P. Ataxia with giant axonopathy in Acbd5-deficient mice halted by adeno-associated virus gene therapy. Brain 2024; 147:1457-1473. [PMID: 38066620 DOI: 10.1093/brain/awad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/06/2024] Open
Abstract
Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal β-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Luis Granadeiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Violeta Enríquez Zarralanga
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Ricardo Rosa
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Filipa Franquinho
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| |
Collapse
|
7
|
Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol 2024; 161:99-132. [PMID: 38244103 PMCID: PMC10822820 DOI: 10.1007/s00418-023-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.
Collapse
Grants
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- European Union’s Horizon 2020 research and innovation programme
- Deutsches Zentrum für Herz-Kreislaufforschung
- German Research Foundation
- Medical Faculty Mannheim, University of Heidelberg
Collapse
Affiliation(s)
- Rechal Kumar
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, University of Heidelberg, 68167, Mannheim, Germany
| | - Harley Worthy
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ruth Carmichael
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Michael Schrader
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
8
|
Rudaks LI, Triplett J, Morris K, Reddel S, Worgan L. ACBD5-related retinal dystrophy with leukodystrophy due to novel mutations in ACBD5 and with additional features including ovarian insufficiency. Am J Med Genet A 2024; 194:346-350. [PMID: 37789430 DOI: 10.1002/ajmg.a.63433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Acyl-CoA-binding domain-containing protein 5-related retinal dystrophy with leukodystrophy (ACBD5) is a peroxisomal disorder due to deficiency of ACBD5. Presenting features include retinal dystrophy, progressive leukodystrophy, and ataxia. Only seven cases of ACBD5-related retinal dystrophy have been reported in the literature to date, including one other case diagnosed in adulthood. Here we report a case with novel compound heterozygous ACBD5 mutations, presenting with the common features of rod monochromatism and progressive leukodystrophy with spasticity and ataxia. Additional novel clinical features included head and neck tremor and ovarian insufficiency. The patient's symptoms were present since infancy, but a diagnosis was only reached in adulthood when whole exome sequencing was performed. This case, which reports two novel mutations and additional clinical manifestations, contributes to the emerging phenotype of ACBD5-related retinal dystrophy with leukodystrophy, and delineation of the natural history and disease progression.
Collapse
Affiliation(s)
- Laura Ivete Rudaks
- Concord Repatriation General Hospital, Concord, Australia
- Royal North Shore Hospital, St Leonards, Australia
- Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - James Triplett
- Concord Repatriation General Hospital, Concord, Australia
- Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Katrina Morris
- Concord Repatriation General Hospital, Concord, Australia
- Royal North Shore Hospital, St Leonards, Australia
- Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Stephen Reddel
- Concord Repatriation General Hospital, Concord, Australia
- Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Lisa Worgan
- Concord Repatriation General Hospital, Concord, Australia
- Faculty of Medicine, University of Sydney, Camperdown, Australia
- Royal Prince Alfred Hospital, Camperdown, Australia
| |
Collapse
|
9
|
Leyland B, Novichkova E, Dolui AK, Jallet D, Daboussi F, Legeret B, Li Z, Li-Beisson Y, Boussiba S, Khozin-Goldberg I. Acyl-CoA binding protein is required for lipid droplet degradation in the diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2024; 194:958-981. [PMID: 37801606 DOI: 10.1093/plphys/kiad525] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 10/08/2023]
Abstract
Diatoms (Bacillariophyceae) accumulate neutral storage lipids in lipid droplets during stress conditions, which can be rapidly degraded and recycled when optimal conditions resume. Since nutrient and light availability fluctuate in marine environments, storage lipid turnover is essential for diatom dominance of marine ecosystems. Diatoms have garnered attention for their potential to provide a sustainable source of omega-3 fatty acids. Several independent proteomic studies of lipid droplets isolated from the model oleaginous pennate diatom Phaeodactylum tricornutum have identified a previously uncharacterized protein with an acyl-CoA binding (ACB) domain, Phatrdraft_48778, here referred to as Phaeodactylum tricornutum acyl-CoA binding protein (PtACBP). We report the phenotypic effects of CRISPR-Cas9 targeted genome editing of PtACBP. ptacbp mutants were defective in lipid droplet and triacylglycerol degradation, as well as lipid and eicosapentaenoic acid synthesis, during recovery from nitrogen starvation. Transcription of genes responsible for peroxisomal β-oxidation, triacylglycerol lipolysis, and eicosapentaenoic acid synthesis was inhibited. A lipid-binding assay using a synthetic ACB domain from PtACBP indicated preferential binding specificity toward certain polar lipids. PtACBP fused to eGFP displayed an endomembrane-like pattern, which surrounded the periphery of lipid droplets. PtACBP is likely responsible for intracellular acyl transport, affecting cell division, development, photosynthesis, and stress response. A deeper understanding of the molecular mechanisms governing storage lipid turnover will be crucial for developing diatoms and other microalgae as biotechnological cell factories.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Ekaterina Novichkova
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Achintya Kumar Dolui
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Denis Jallet
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute Bio & Chemical Engineering, Institut National de la Recherche Agronomique, Institute National Des Sciences Appliquees, Le Centre national de la recherche scientifique, Toulouse 31077, France
| | - Bertrand Legeret
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Zhongze Li
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint Paul-Lez-Durance 13108, France
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
| |
Collapse
|
10
|
Costello JL, Koster J, Silva BSC, Worthy HL, Schrader TA, Hacker C, Passmore J, Kuypers FA, Waterham HR, Schrader M. Differential roles for ACBD4 and ACBD5 in peroxisome-ER interactions and lipid metabolism. J Biol Chem 2023; 299:105013. [PMID: 37414147 PMCID: PMC10410513 DOI: 10.1016/j.jbc.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal β-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of β-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.
Collapse
Affiliation(s)
| | - Janet Koster
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz S C Silva
- Department of Biosciences, University of Exeter, Exeter, UK; Luxembourg Centre for Systems Biomedicine, Campus Belval | House of Biomedicine II, Université du Luxembourg, Belvaux, Luxembourg
| | | | | | | | - Josiah Passmore
- Department of Biosciences, University of Exeter, Exeter, UK; Division of Cell Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Hans R Waterham
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
11
|
Carmichael RE, Richards DM, Fahimi HD, Schrader M. Organelle Membrane Extensions in Mammalian Cells. BIOLOGY 2023; 12:biology12050664. [PMID: 37237478 DOI: 10.3390/biology12050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Organelles within eukaryotic cells are not isolated static compartments, instead being morphologically diverse and highly dynamic in order to respond to cellular needs and carry out their diverse and cooperative functions. One phenomenon exemplifying this plasticity, and increasingly gaining attention, is the extension and retraction of thin tubules from organelle membranes. While these protrusions have been observed in morphological studies for decades, their formation, properties and functions are only beginning to be understood. In this review, we provide an overview of what is known and still to be discovered about organelle membrane protrusions in mammalian cells, focusing on the best-characterised examples of these membrane extensions arising from peroxisomes (ubiquitous organelles involved in lipid metabolism and reactive oxygen species homeostasis) and mitochondria. We summarise the current knowledge on the diversity of peroxisomal/mitochondrial membrane extensions, as well as the molecular mechanisms by which they extend and retract, necessitating dynamic membrane remodelling, pulling forces and lipid flow. We also propose broad cellular functions for these membrane extensions in inter-organelle communication, organelle biogenesis, metabolism and protection, and finally present a mathematical model that suggests that extending protrusions is the most efficient way for an organelle to explore its surroundings.
Collapse
Affiliation(s)
- Ruth E Carmichael
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - David M Richards
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - H Dariush Fahimi
- Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Schrader
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
Abe Y, Wanders RJA, Waterham HR, Mandel H, Falik-Zaccai TC, Ishihara N, Fujiki Y. Genetic defects in peroxisome morphogenesis (Pex11β, dynamin-like protein 1, and nucleoside diphosphate kinase 3) affect docosahexaenoic acid-phospholipid metabolism. J Inherit Metab Dis 2023; 46:273-285. [PMID: 36522796 DOI: 10.1002/jimd.12582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and β-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11β and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11β, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11β-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Ronald J A Wanders
- Departments of Pediatrics, EMMA Children's Hospital & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Pediatrics, EMMA Children's Hospital & Laboratory Division, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Hanna Mandel
- Galilee Medical Center, Institute of Human Genetics, Nahariya, Israel
| | - Tzipora C Falik-Zaccai
- Galilee Medical Center, Institute of Human Genetics, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Naotada Ishihara
- Department of Biological Sciences, Osaka University, Osaka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food-Kyushu University Collaboration Program, Kyushu University, Fukuoka, Japan
- Graduate School of Science, University of Hyogo, Hyogo, Japan
| |
Collapse
|
13
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
14
|
Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol 2023; 33:70-86. [PMID: 35788297 DOI: 10.1016/j.tcb.2022.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/27/2022]
Abstract
Peroxisomes are essential metabolic organelles, well known for their roles in the metabolism of complex lipids and reactive ionic species. In the past 10 years, peroxisomes have also been cast as central regulators of immunity. Lipid metabolites of peroxisomes, such as polyunsaturated fatty acids (PUFAs), are precursors for important immune mediators, including leukotrienes (LTs) and resolvins. Peroxisomal redox metabolism modulates cellular immune signaling such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Additionally, peroxisomal β-oxidation and ether lipid synthesis control the development and aspects of the activation of both innate and adaptive immune cells. Finally, peroxisome number and metabolic activity have been linked to inflammatory diseases. These discoveries have opened avenues of investigation aimed at targeting peroxisomes for therapeutic intervention in immune disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Francesca Di Cara
- Dalhousie University, Department of Microbiology and Immunology, Halifax, NS B3K 6R8, Canada.
| | - Stéphane Savary
- Lab. Bio-PeroxIL EA7270, University of Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology in Zurich (ETH Zürich), Zurich, Switzerland
| | - Peter Kim
- Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | |
Collapse
|
15
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Wenzel EM, Elfmark LA, Stenmark H, Raiborg C. ER as master regulator of membrane trafficking and organelle function. J Cell Biol 2022; 221:e202205135. [PMID: 36108241 PMCID: PMC9481738 DOI: 10.1083/jcb.202205135] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER), which occupies a large portion of the cytoplasm, is the cell's main site for the biosynthesis of lipids and carbohydrate conjugates, and it is essential for folding, assembly, and biosynthetic transport of secreted proteins and integral membrane proteins. The discovery of abundant membrane contact sites (MCSs) between the ER and other membrane compartments has revealed that, in addition to its biosynthetic and secretory functions, the ER plays key roles in the regulation of organelle dynamics and functions. In this review, we will discuss how the ER regulates endosomes, lysosomes, autophagosomes, mitochondria, peroxisomes, and the Golgi apparatus via MCSs. Such regulation occurs via lipid and Ca2+ transfer and also via control of in trans dephosphorylation reactions and organelle motility, positioning, fusion, and fission. The diverse controls of other organelles via MCSs manifest the ER as master regulator of organelle biology.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
19
|
Fission Impossible (?)-New Insights into Disorders of Peroxisome Dynamics. Cells 2022; 11:cells11121922. [PMID: 35741050 PMCID: PMC9221819 DOI: 10.3390/cells11121922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxisomes are highly dynamic and responsive organelles, which can adjust their morphology, number, intracellular position, and metabolic functions according to cellular needs. Peroxisome multiplication in mammalian cells involves the concerted action of the membrane-shaping protein PEX11β and division proteins, such as the membrane adaptors FIS1 and MFF, which recruit the fission GTPase DRP1 to the peroxisomal membrane. The latter proteins are also involved in mitochondrial division. Patients with loss of DRP1, MFF or PEX11β function have been identified, showing abnormalities in peroxisomal (and, for the shared proteins, mitochondrial) dynamics as well as developmental and neurological defects, whereas the metabolic functions of the organelles are often unaffected. Here, we provide a timely update on peroxisomal membrane dynamics with a particular focus on peroxisome formation by membrane growth and division. We address the function of PEX11β in these processes, as well as the role of peroxisome–ER contacts in lipid transfer for peroxisomal membrane expansion. Furthermore, we summarize the clinical phenotypes and pathophysiology of patients with defects in the key division proteins DRP1, MFF, and PEX11β as well as in the peroxisome–ER tether ACBD5. Potential therapeutic strategies for these rare disorders with limited treatment options are discussed.
Collapse
|
20
|
Wang S, Yang C, Pan C, Feng X, Lei Z, Huang J, Wei X, Li F, Ma Y. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene X 2022; 818:146225. [PMID: 35063576 DOI: 10.1016/j.gene.2022.146225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Xinyang buffalo is a valuable and endangered domestic heritage resource in the Dabie Mountain region in China. With the increasing mechanization of agriculture, the Xinyang buffalo, mainly used for labor, faces unprecedented challenges. One of the feasible approaches to conserve and expand the species is to transfer Xinyang buffalo from service-use to meat-use, but the main hindrance to this transformation is the inferior meat quality of Xinyang buffalo, which is not popular with consumers. Based on the above, this study was conducted to evaluate the growth performance (n = 120) and slaughter performance (n = 3) of Xinyang buffalo and to measure the amino acid levels of the eye muscle (EM), and assess the meat quality. Later, transcriptome sequencing was performed on the subcutaneous fat of the back at six (n = 3) and 30 months of age (n = 3), together with the excavation of candidate genes associated with fat deposition using the weighted co-expression network analysis (WGCNA) method. The results showed that the slaughter rate of Xinyang buffalo was 43.09%, net meat percentage was 33.04%, the ocular area was 59.16 ± 7.58, the backfat thickness was 1.03 ± 0.16, and meat bone ratio was 3.29. The total amino acid contents were 0.63 g per gram of beef, which contained 0.05 g of essential amino acids, and the three most abundant amino acids were Ser (447.17 mg/g), Asp (29.8 mg/g), and Pro (27.24 mg/g). The WGCNA results showed that six phenotypes measured were significantly correlated with the turquoise module (r > 0.97, P < 0.001), and the genes in these modules were significantly enriched in the pathways related to substance metabolism and energy metabolisms, such as metabolic pathways, citrate cycle, and fatty acid metabolism. Meanwhile, six key candidate genes (FH, MECR, GPI, PANK3, ATP6V1A, PHYH) were identified, which were associated with growth and development, fat deposition, and intra-muscular amino acid levels (P < 0.05). In short, this study provides another feasible way to preserve buffalo and enriches the theory of its molecular genetic breeding.
Collapse
Affiliation(s)
- Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Chaoyun Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Cuili Pan
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xue Feng
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China; College of Life Sciences, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Fen Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China.
| |
Collapse
|
21
|
Kamoshita M, Kumar R, Anteghini M, Kunze M, Islinger M, Martins dos Santos V, Schrader M. Insights Into the Peroxisomal Protein Inventory of Zebrafish. Front Physiol 2022; 13:822509. [PMID: 35295584 PMCID: PMC8919083 DOI: 10.3389/fphys.2022.822509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/19/2022] Open
Abstract
Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions causes severe disorders with developmental and neurological abnormalities. Zebrafish are emerging as an attractive vertebrate model to study peroxisomal disorders as well as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal proteins, which we systematically compared with those of human peroxisomes. Through bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3), but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in the presence of purine degrading enzymes. Furthermore, we revealed novel candidate peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our findings confirm the suitability of zebrafish as a vertebrate model for peroxisome research and open possibilities for the study of novel peroxisomal candidate proteins in zebrafish and humans.
Collapse
Affiliation(s)
- Maki Kamoshita
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marco Anteghini
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Islinger
- Institute of Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vítor Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom
- *Correspondence: Michael Schrader,
| |
Collapse
|
22
|
Gorukmez O, Havalı C, Gorukmez O, Dorum S. Newly defined peroxisomal disease with novel ACBD5 mutation. J Pediatr Endocrinol Metab 2022; 35:11-18. [PMID: 34668366 DOI: 10.1515/jpem-2020-0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
Peroxisomal disorders are a heterogeneous group of diseases caused by mutations in a large number of genes. One of the genetic disorders known to cause this situation is ACBD5 (Acyl-CoA binding-domain-containing-5) gene mutations that have been described in recent years. Here, we report two siblings with a novel homozygous nonsense variation (c.1297C>T, p.Arg433*) in ACBD5 (NM_145698.4) gene using Clinical Exome Sequencing (Sophia Genetics).
Collapse
Affiliation(s)
- Ozlem Gorukmez
- Department of Medical Genetics, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Cengiz Havalı
- Department of Pediatrics, Division of Neurology, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Orhan Gorukmez
- Department of Medical Genetics, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Pediatrics, Division of Metabolism, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
23
|
Garikapati V, Colasante C, Baumgart-Vogt E, Spengler B. Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11α knockout mice. Anal Bioanal Chem 2022; 414:2235-2250. [PMID: 35083512 PMCID: PMC8821073 DOI: 10.1007/s00216-021-03860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Peroxisomes are versatile single membrane-enclosed cytoplasmic organelles, involved in reactive oxygen species (ROS) and lipid metabolism and diverse other metabolic processes. Peroxisomal disorders result from mutations in Pex genes-encoded proteins named peroxins (PEX proteins) and single peroxisomal enzyme deficiencies. The PEX11 protein family (α, β, and γ isoforms) plays an important role in peroxisomal proliferation and fission. However, their specific functions and the metabolic impact caused by their deficiencies have not been precisely characterized. To understand the systemic molecular alterations caused by peroxisomal defects, here we utilized untreated peroxisomal biogenesis factor 11α knockout (Pex11α KO) mouse model and performed serial relative-quantitative lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue homogenates. We demonstrated significant specific changes in the abundances of multiple lipid species, polar metabolites, and proteins and dysregulated metabolic pathways in distinct biological specimens of the Pex11α KO adult mice in comparison to the wild type (WT) controls. Overall, the present study reports comprehensive semi-quantitative molecular omics information of the Pex11α KO mice, which might serve in the future as a reference for a better understanding of the roles of Pex11α and underlying pathophysiological mechanisms of peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.,Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
24
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
25
|
Das Y, Swinkels D, Baes M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity. Int J Mol Sci 2021; 22:ijms22084101. [PMID: 33921065 PMCID: PMC8071455 DOI: 10.3390/ijms22084101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.
Collapse
|
26
|
Yamashita K, Tamura S, Honsho M, Yada H, Yagita Y, Kosako H, Fujiki Y. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J Cell Biol 2021; 219:152047. [PMID: 32854114 PMCID: PMC7659713 DOI: 10.1083/jcb.202001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023] Open
Abstract
Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.
Collapse
Affiliation(s)
- Koichiro Yamashita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Hiroto Yada
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yagita
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
27
|
Acyl-CoA thioesterase activity of peroxisomal ABC protein ABCD1 is required for the transport of very long-chain acyl-CoA into peroxisomes. Sci Rep 2021; 11:2192. [PMID: 33500543 PMCID: PMC7838297 DOI: 10.1038/s41598-021-81949-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The ABCD1 protein, one of the four ATP-binding cassette (ABC) proteins in subfamily D, is located on the peroxisomal membrane and is involved in the transport of very long chain fatty acid (VLCFA)-CoA into peroxisomes. Its mutation causes X-linked adrenoleukodystophy (X-ALD): an inborn error of peroxisomal β-oxidation of VLCFA. Whether ABCD1 transports VLCFA-CoA as a CoA ester or free fatty acid is controversial. Recently, Comatose (CTS), a plant homologue of human ABCD1, has been shown to possess acyl-CoA thioesterase (ACOT) activity, and it is suggested that this activity is required for transport of acyl-CoA into peroxisomes. However, the precise transport mechanism is unknown. Here, we expressed human His-tagged ABCD1 in methylotrophic yeast, and characterized its ACOT activity and transport mechanism. The expressed ABCD1 possessed both ATPase and ACOT activities. The ACOT activity of ABCD1 was inhibited by p-chloromercuribenzoic acid (pCMB), a cysteine-reactive compound. Furthermore, we performed a transport assay with ABCD1-containing liposomes using 7-nitro-2–1,3-benzoxadiazol-4-yl (NBD)-labeled acyl-CoA as the substrate. The results showed that the fatty acid produced from VLCFA-CoA by ABCD1 is transported into liposomes and that ACOT activity is essential during this transport process. We propose a detailed mechanism of VLCFA-CoA transport by ABCD1.
Collapse
|
28
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Bartlett M, Nasiri N, Pressman R, Bademci G, Forghani I. First reported adult patient with retinal dystrophy and leukodystrophy caused by a novel ACBD5 variant: A case report and review of literature. Am J Med Genet A 2021; 185:1236-1241. [PMID: 33427402 DOI: 10.1002/ajmg.a.62073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Peroxisomes play an essential role in lipid metabolism via interaction with other intracellular organelles. The information about the role of the Acyl-CoA-binding domain containing-protein 5 (ACBD5) in these interactions in human cells is emerging. Moreover, a few patients with retinal dystrophy and leukodystrophy caused by pathogenic variants in ACBD5 have been recently introduced. Here, we present a 36-year-old female with retinal dystrophy, leukodystrophy, and psychomotor regression due to a novel homozygous variant in ACBD5. Our study adds to the growing knowledge of this peroxisomal disorder by providing phenotypic details of the first adult patient.
Collapse
Affiliation(s)
- Michelle Bartlett
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.,University of Washington Medical Center, Seattle, Washington, USA
| | - Nima Nasiri
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rena Pressman
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Guney Bademci
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irman Forghani
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
30
|
Vallese F, Catoni C, Cieri D, Barazzuol L, Ramirez O, Calore V, Bonora M, Giamogante F, Pinton P, Brini M, Calì T. An expanded palette of improved SPLICS reporters detects multiple organelle contacts in vitro and in vivo. Nat Commun 2020; 11:6069. [PMID: 33247103 PMCID: PMC7699637 DOI: 10.1038/s41467-020-19892-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.
Collapse
Affiliation(s)
- Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Domenico Cieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Omar Ramirez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Valentina Calore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy.
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy. .,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
31
|
Cerebellar and hepatic alterations in ACBD5-deficient mice are associated with unexpected, distinct alterations in cellular lipid homeostasis. Commun Biol 2020; 3:713. [PMID: 33244184 PMCID: PMC7691522 DOI: 10.1038/s42003-020-01442-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
ACBD5 deficiency is a novel peroxisome disorder with a largely uncharacterized pathology. ACBD5 was recently identified in a tethering complex mediating membrane contacts between peroxisomes and the endoplasmic reticulum (ER). An ACBD5-deficient mouse was analyzed to correlate ACBD5 tethering functions with the disease phenotype. ACBD5-deficient mice exhibit elevated very long-chain fatty acid levels and a progressive cerebellar pathology. Liver did not exhibit pathologic changes but increased peroxisome abundance and drastically reduced peroxisome-ER contacts. Lipidomics of liver and cerebellum revealed tissue-specific alterations in distinct lipid classes and subspecies. In line with the neurological pathology, unusual ultra-long chain fatty acids (C > 32) were elevated in phosphocholines from cerebelli but not liver indicating an organ-specific imbalance in fatty acid degradation and elongation pathways. By contrast, ether lipid formation was perturbed in liver towards an accumulation of alkyldiacylglycerols. The alterations in several lipid classes suggest that ACBD5, in addition to its acyl-CoA binding function, might maintain peroxisome-ER contacts in order to contribute to the regulation of anabolic and catabolic cellular lipid pathways. Darwisch, von Spangenberg et al. show that ACBD5‐deficient mice exhibit elevated levels of very long‐chain fatty acids and a progressive cerebellar pathology. A complex metabolic phenotype suggests that ACBD5 with its acyl‐CoA binding and peroxisome‐ER tethering functions might contribute to the regulation of anabolic and catabolic cellular lipid pathways.
Collapse
|
32
|
Valença I, Ferreira AR, Correia M, Kühl S, van Roermund C, Waterham HR, Máximo V, Islinger M, Ribeiro D. Prostate Cancer Proliferation Is Affected by the Subcellular Localization of MCT2 and Accompanied by Significant Peroxisomal Alterations. Cancers (Basel) 2020; 12:cancers12113152. [PMID: 33121137 PMCID: PMC7693163 DOI: 10.3390/cancers12113152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Fatty acid β-oxidation is a dominant bioenergetic pathway in prostate cancer. It has recently been suggested that the specific targeting of monocarboxylate transporter 2 (MCT2) to peroxisomes contributed to an increase in β-oxidation rates and maintenance of the redox balance in prostate cancer cells. Here we provide evidence demonstrating that prostate cancer streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Importantly, we show that the localization of MCT2 at peroxisomes is required for prostate cancer cell proliferation. Our results emphasize the importance of peroxisomes for prostate cancer development and highlight different cellular mechanisms that may be further explored as possible targets for prostate cancer therapy. Abstract Reprogramming of lipid metabolism directly contributes to malignant transformation and progression. The increased uptake of circulating lipids, the transfer of fatty acids from stromal adipocytes to cancer cells, the de novo fatty acid synthesis, and the fatty acid oxidation support the central role of lipids in many cancers, including prostate cancer (PCa). Fatty acid β-oxidation is the dominant bioenergetic pathway in PCa and recent evidence suggests that PCa takes advantage of the peroxisome transport machinery to target monocarboxylate transporter 2 (MCT2) to peroxisomes in order to increase β-oxidation rates and maintain the redox balance. Here we show evidence suggesting that PCa streamlines peroxisome metabolism by upregulating distinct pathways involved in lipid metabolism. Moreover, we show that MCT2 is required for PCa cell proliferation and, importantly, that its specific localization at the peroxisomal membranes is essential for this role. Our results highlight the importance of peroxisomes in PCa development and uncover different cellular mechanisms that may be further explored as possible targets for PCa therapy.
Collapse
Affiliation(s)
- Isabel Valença
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
| | - Ana Rita Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
| | - Marcelo Correia
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.C.); (V.M.)
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Sandra Kühl
- Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.K.); (M.I.)
| | - Carlo van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC—Location AMC, 1105 AZ Amsterdam, The Netherlands; (C.v.R.); (H.R.W.)
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC—Location AMC, 1105 AZ Amsterdam, The Netherlands; (C.v.R.); (H.R.W.)
| | - Valdemar Máximo
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (M.C.); (V.M.)
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Medical Faculty, University of Porto, 4200-319 Porto, Portugal
| | - Markus Islinger
- Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.K.); (M.I.)
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (I.V.); (A.R.F.)
- Correspondence:
| |
Collapse
|
33
|
Interplay between Peripheral and Central Inflammation in Obesity-Promoted Disorders: The Impact on Synaptic Mitochondrial Functions. Int J Mol Sci 2020; 21:ijms21175964. [PMID: 32825115 PMCID: PMC7504224 DOI: 10.3390/ijms21175964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic dysfunctions induced by high fat diet (HFD) consumption are not limited to organs involved in energy metabolism but cause also a chronic low-grade systemic inflammation that affects the whole body including the central nervous system. The brain has been considered for a long time to be protected from systemic inflammation by the blood–brain barrier, but more recent data indicated an association between obesity and neurodegeneration. Moreover, obesity-related consequences, such as insulin and leptin resistance, mitochondrial dysfunction and reactive oxygen species (ROS) production, may anticipate and accelerate the physiological aging processes characterized by systemic inflammation and higher susceptibility to neurological disorders. Here, we discussed the link between obesity-related metabolic dysfunctions and neuroinflammation, with particular attention to molecules regulating the interplay between energetic impairment and altered synaptic plasticity, for instance AMP-activated protein kinase (AMPK) and Brain-derived neurotrophic factor (BDNF). The effects of HFD-induced neuroinflammation on neuronal plasticity may be mediated by altered brain mitochondrial functions. Since mitochondria play a key role in synaptic areas, providing energy to support synaptic plasticity and controlling ROS production, the negative effects of HFD may be more pronounced in synapses. In conclusion, it will be emphasized how HFD-induced metabolic alterations, systemic inflammation, oxidative stress, neuroinflammation and impaired brain plasticity are tightly interconnected processes, implicated in the pathogenesis of neurological diseases.
Collapse
|
34
|
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: The physiological relevance of organelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118800. [PMID: 32712071 PMCID: PMC7377706 DOI: 10.1016/j.bbamcr.2020.118800] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Membrane-bound organelles in eukaryotic cells form an interactive network to coordinate and facilitate cellular functions. The formation of close contacts, termed "membrane contact sites" (MCSs), represents an intriguing strategy for organelle interaction and coordinated interplay. Emerging research is rapidly revealing new details of MCSs. They represent ubiquitous and diverse structures, which are important for many aspects of cell physiology and homeostasis. Here, we provide a comprehensive overview of the physiological relevance of organelle contacts. We focus on mitochondria, peroxisomes, the Golgi complex and the plasma membrane, and discuss the most recent findings on their interactions with other subcellular organelles and their multiple functions, including membrane contacts with the ER, lipid droplets and the endosomal/lysosomal compartment.
Collapse
Affiliation(s)
- Beatriz S C Silva
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Laura DiGiovanni
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rechal Kumar
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Ruth E Carmichael
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
35
|
Triphenyl phosphate is a selective PPARγ modulator that does not induce brite adipogenesis in vitro and in vivo. Arch Toxicol 2020; 94:3087-3103. [PMID: 32683515 DOI: 10.1007/s00204-020-02815-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023]
Abstract
Triphenyl phosphate (TPhP) is an environmental PPARγ ligand, and growing evidence suggests that it is a metabolic disruptor. We have shown previously that the structurally similar ligand, tributyltin, does not induce brite adipocyte gene expression. Here, using in vivo and in vitro models, we tested the hypothesis that TPhP is a selective PPARγ ligand, which fails to induce brite adipogenesis. C57BL/6 J male mice were fed either a low or very high-fat diet for 13 weeks. From weeks 7-13, mice were injected intraperitoneally, daily, with vehicle, rosiglitazone (Rosi), or TPhP (10 mg/kg). Compared to Rosi, TPhP did not induce expression of browning-related genes (e.g. Elovl3, Cidea, Acaa2, CoxIV) in mature adipocytes isolated from inguinal adipose. To determine if this resulted from an effect directly on the adipocytes, 3T3-L1 cells and primary human preadipocytes were differentiated into adipocytes in the presence of Rosi or TPhP. Rosi, but not TPhP, induced expression of brite adipocyte genes, mitochondrial biogenesis and cellular respiration. Further, Rosi and TPhP-induced distinct proteomes and phosphoproteomes; Rosi enriched more regulatory pathways related to fatty acid oxidation and mitochondrial proteins. We assessed the role of phosphorylation of PPARγ in these differences in 3T3-L1 cells. Only Rosi protected PPARγ from phosphorylation at Ser273. TPhP gained the ability to stimulate brite adipocyte gene expression in the presence of the CDK5 inhibitor and in 3T3-L1 cells expressing alanine at position 273. We conclude that TPhP is a selective PPARγ modulator that fails to protect PPARγ from phosphorylation at ser273.
Collapse
|
36
|
Chen C, Li J, Qin X, Wang W. Peroxisomal Membrane Contact Sites in Mammalian Cells. Front Cell Dev Biol 2020; 8:512. [PMID: 32714927 PMCID: PMC7344225 DOI: 10.3389/fcell.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes participate in essential cellular metabolic processes, such as oxidation of fatty acids (FAs) and maintenance of reactive oxygen species (ROS) homeostasis. Peroxisomes must communicate with surrounding organelles to exchange information and metabolites. The formation of membrane contact sites (MCSs), where protein-protein or protein-lipid complexes tether the opposing membranes of two organelles, represents an essential means of organelle crosstalk. Peroxisomal MCS (PO-MCS) studies are emerging but are still in the early stages. In this review, we summarize the identified PO-MCSs with the ER, mitochondria, lipid droplets, and lysosomes in mammalian cells and discuss their tethering mechanisms and physiological roles. We also highlight several features of PO-MCSs that may help future studies.
Collapse
Affiliation(s)
- Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuhui Qin
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
38
|
Requirement of the acyl-CoA carrier ACBD6 in myristoylation of proteins: Activation by ligand binding and protein interaction. PLoS One 2020; 15:e0229718. [PMID: 32108178 PMCID: PMC7046191 DOI: 10.1371/journal.pone.0229718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Glycine N-myristoylation is an essential acylation modification modulating the functions, stability, and membrane association of diverse cytosolic proteins in human cells. Myristoyl-CoA is the 14-carbon acyl donor of the acyltransferase reaction. Acyl-CoAs of a chain length compatible with the binding site of the N-myristoyltransferase enzymes (NMT) are competitive inhibitors, and the mechanism protecting these enzymes from unwanted acyl-CoA species requires the acyl-CoA binding protein ACBD6. The acyl-CoA binding domain (ACB) and the ankyrin-repeat motifs (ANK) of ACBD6 can perform their functions independently. Interaction of ANK with human NMT2 was necessary and sufficient to provide protection. Fusion of the ANK module to the acyl-CoA binding protein ACBD1 was sufficient to confer the NMT-stimulatory property of ACBD6 to the chimera. The ACB domain is dispensable and sequestration of the competitor was not the basis for NMT2 protection. Acyl-CoAs bound to ACB modulate the function of the ANK module and act as positive effector of the allosteric activation of the enzyme. The functional relevance of homozygous mutations in ACBD6 gene, which have not been associated with a disease so far, is presented. Skin-derived fibroblasts of two unrelated individuals with neurodevelopmental disorder and carrying loss of function mutations in the ACBD6 gene were deficient in protein N-myristoylation. These cells were sensitive to substrate analog competing for myristoyl-CoA binding to NMT. These findings account for the requirement of an ANK-containing acyl-CoA binding protein in the cellular mechanism protecting the NMT enzymes and establish that in human cells, ACBD6 supports the N-myristoylation of proteins.
Collapse
|
39
|
Fu Z, Sun Y, Cakir B, Tomita Y, Huang S, Wang Z, Liu CH, S. Cho S, Britton W, S. Kern T, Antonetti DA, Hellström A, E.H. Smith L. Targeting Neurovascular Interaction in Retinal Disorders. Int J Mol Sci 2020; 21:E1503. [PMID: 32098361 PMCID: PMC7073081 DOI: 10.3390/ijms21041503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
The tightly structured neural retina has a unique vascular network comprised of three interconnected plexuses in the inner retina (and choroid for outer retina), which provide oxygen and nutrients to neurons to maintain normal function. Clinical and experimental evidence suggests that neuronal metabolic needs control both normal retinal vascular development and pathological aberrant vascular growth. Particularly, photoreceptors, with the highest density of mitochondria in the body, regulate retinal vascular development by modulating angiogenic and inflammatory factors. Photoreceptor metabolic dysfunction, oxidative stress, and inflammation may cause adaptive but ultimately pathological retinal vascular responses, leading to blindness. Here we focus on the factors involved in neurovascular interactions, which are potential therapeutic targets to decrease energy demand and/or to increase energy production for neovascular retinal disorders.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - William Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| | - Timothy S. Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute, Irvine, CA 92697, USA;
| | - David A. Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden;
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (Y.S.); (B.C.); (Y.T.); (S.H.); (Z.W.); (C.-H.L.); (S.S.C.); (W.B.)
| |
Collapse
|
40
|
Wanders RJA, Vaz FM, Waterham HR, Ferdinandusse S. Fatty Acid Oxidation in Peroxisomes: Enzymology, Metabolic Crosstalk with Other Organelles and Peroxisomal Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:55-70. [PMID: 33417207 DOI: 10.1007/978-3-030-60204-8_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisomes play a central role in metabolism as exemplified by the fact that many genetic disorders in humans have been identified through the years in which there is an impairment in one or more of these peroxisomal functions, in most cases associated with severe clinical signs and symptoms. One of the key functions of peroxisomes is the β-oxidation of fatty acids which differs from the oxidation of fatty acids in mitochondria in many respects which includes the different substrate specificities of the two organelles. Whereas mitochondria are the main site of oxidation of medium-and long-chain fatty acids, peroxisomes catalyse the β-oxidation of a distinct set of fatty acids, including very-long-chain fatty acids, pristanic acid and the bile acid intermediates di- and trihydroxycholestanoic acid. Peroxisomes require the functional alliance with multiple subcellular organelles to fulfil their role in metabolism. Indeed, peroxisomes require the functional interaction with lysosomes, lipid droplets and the endoplasmic reticulum, since these organelles provide the substrates oxidized in peroxisomes. On the other hand, since peroxisomes lack a citric acid cycle as well as respiratory chain, oxidation of the end-products of peroxisomal fatty acid oxidation notably acetyl-CoA, and different medium-chain acyl-CoAs, to CO2 and H2O can only occur in mitochondria. The same is true for the reoxidation of NADH back to NAD+. There is increasing evidence that these interactions between organelles are mediated by tethering proteins which bring organelles together in order to allow effective exchange of metabolites. It is the purpose of this review to describe the current state of knowledge about the role of peroxisomes in fatty acid oxidation, the transport of metabolites across the peroxisomal membrane, its functional interaction with other subcellular organelles and the disorders of peroxisomal fatty acid β-oxidation identified so far in humans.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Departments of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases and Emma Children's hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis 2020; 43:71-89. [PMID: 30864148 PMCID: PMC7041636 DOI: 10.1002/jimd.12083] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Peroxisomes are multifunctional, dynamic, membrane-bound organelles with important functions in cellular lipid metabolism, rendering them essential for human health and development. Important roles for peroxisomes in signaling and the fine-tuning of cellular processes are emerging, which integrate them in a complex network of interacting cellular compartments. Like many other organelles, peroxisomes communicate through membrane contact sites. For example, peroxisomal growth, positioning, and lipid metabolism involves contacts with the endoplasmic reticulum (ER). Here, we discuss the most recent findings on peroxisome-organelle interactions including peroxisome-ER interplay at membrane contacts sites, and functional interplay with mitochondria, lysosomes, and lipid droplets in mammalian cells. We address tether proteins, metabolic cooperation, and the impact of peroxisome interactions on human health and disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Maki Kamoshita
- College of Life and Environmental Sciences, BiosciencesUniversity of ExeterExeterUK
| | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty ManheimUniversity of HeidelbergMannheimGermany
| |
Collapse
|
42
|
Chitrala KN, Hernandez DG, Nalls MA, Mode NA, Zonderman AB, Ezike N, Evans MK. Race-specific alterations in DNA methylation among middle-aged African Americans and Whites with metabolic syndrome. Epigenetics 2019; 15:462-482. [PMID: 31739726 DOI: 10.1080/15592294.2019.1695340] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors for all-cause mortality, cardiovascular disease, and cancer. Identifying epigenetic alterations associated with MetS in African Americans (AAs) and Whites may provide insight into genes that influence its differential health outcomes. We examined DNA methylation (DNAm) and performed an epigenome-wide association study (EWAS) of MetS among AAs and Whites with and without MetS. We assessed age, race and poverty status associated DNAm among AAs (n = 225) and White (n = 233) adults using NCEP-ATP III guidelines. Genome-wide DNAm measurement was assessed using Illumina Infinium Methylation EPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) were identified using dmpFinder and bumphunter. EWAS was performed using CpGassoc. We found significant DMPs associated with age, poverty status and MetS in each race. GSTT1(Glutathione S-Transferase Theta 1) was one of the top-hypermethylated genes and MIPEP (Mitochondrial Intermediate Peptidase) was one of the most hypomethylated genes when comparing AAs with and without MetS. PPP1R13L (Protein Phosphatase 1 Regulatory Subunit 13 Like) was the top hypermethylated and SCD (stearoyl-CoA desaturase-1) was one of the most hypomethylated genes for Whites with and without MetS. EWAS results showed that DNAm differences might contribute to MetS risk among Whites and AAs since different genes were identified in AAs and Whites. We replicated previously identified MetS associated genes and found that Thioredoxin-interacting protein (TXN1P) was statistically significantly differentially expressed only in Whites. Our results may be useful in further studies of genes underlying differences in MetS among AAs and Whites.
Collapse
Affiliation(s)
- Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, Glen Echo, MD, USA
| | - Nicolle A Mode
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ngozi Ezike
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
43
|
Staying in Healthy Contact: How Peroxisomes Interact with Other Cell Organelles. Trends Mol Med 2019; 26:201-214. [PMID: 31727543 DOI: 10.1016/j.molmed.2019.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022]
Abstract
Peroxisomes share extensive metabolic connections with other cell organelles. Membrane contact sites (MCSs) establish and maintain such interactions, and they are vital for organelle positioning and motility. In the past few years peroxisome interactions and MCSs with other cellular organelles have been explored extensively, resulting in the identification of new MCSs, the tethering molecules involved, and their functional characterization. Defective tethering and compartmental communication can lead to pathological conditions that can be termed 'organelle interaction diseases'. We review peroxisome-organelle interactions in mammals and summarize the most recent knowledge of mammalian peroxisomal organelle contacts in health and disease.
Collapse
|
44
|
Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019; 11:nu11112579. [PMID: 31731503 PMCID: PMC6893649 DOI: 10.3390/nu11112579] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Cognitive dysfunction is linked to chronic low-grade inflammatory stress that contributes to cell-mediated immunity in creating an oxidative environment. Food is a vitally important energy source; it affects brain function and provides direct energy. Several studies have indicated that high-fat consumption causes overproduction of circulating free fatty acids and systemic inflammation. Immune cells, free fatty acids, and circulating cytokines reach the hypothalamus and initiate local inflammation through processes such as microglial proliferation. Therefore, the role of high-fat diet (HFD) in promoting oxidative stress and neurodegeneration is worthy of further discussion. Of particular interest in this article, we highlight the associations and molecular mechanisms of HFD in the modulation of inflammation and cognitive deficits. Taken together, a better understanding of the role of oxidative stress in cognitive impairment following HFD consumption would provide a useful approach for the prevention of cognitive dysfunction.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-8947-2427
| |
Collapse
|
45
|
Imanaka T. Biogenesis and Function of Peroxisomes in Human Disease with a Focus on the ABC Transporter. Biol Pharm Bull 2019; 42:649-665. [PMID: 31061307 DOI: 10.1248/bpb.b18-00723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are indispensable organelles in mammals including humans. They are involved in the β-oxidation of very long chain fatty acids, and the synthesis of ether phospholipids and bile acids. Pre-peroxisomes bud from endoplasmic reticulum and peroxisomal membrane and matrix proteins are imported to the pre-peroxisomes. Then, matured peroxisomes grow by division. Impairment of the biogenesis and function of peroxisomes results in severe diseases. Since I first undertook peroxisome research in Prof. de Duve's laboratory at Rockefeller University in 1985, I have continuously studied peroxisomes for more than 30 years, with a particular focus on the ATP-binding cassette (ABC) transporters. Here, I review the history of peroxisome research, the biogenesis and function of peroxisomes, and peroxisome disease including X-linked adrenoleukodystrophy. The review includes the targeting and function of the ABC transporter subfamily D.
Collapse
Affiliation(s)
- Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
46
|
Costello JL, Passmore JB, Islinger M, Schrader M. Multi-localized Proteins: The Peroxisome-Mitochondria Connection. Subcell Biochem 2019; 89:383-415. [PMID: 30378033 DOI: 10.1007/978-981-13-2233-4_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxisomes and mitochondria are dynamic, multifunctional organelles that play pivotal cooperative roles in the metabolism of cellular lipids and reactive oxygen species. Their functional interplay, the "peroxisome-mitochondria connection", also includes cooperation in anti-viral signalling and defence, as well as coordinated biogenesis by sharing key division proteins. In this review, we focus on multi-localised proteins which are shared by peroxisomes and mitochondria in mammals. We first outline the targeting and sharing of matrix proteins which are involved in metabolic cooperation. Next, we discuss shared components of peroxisomal and mitochondrial dynamics and division, and we present novel insights into the dual targeting of tail-anchored membrane proteins. Finally, we provide an overview of what is currently known about the role of shared membrane proteins in disease. What emerges is that sharing of proteins between these two organelles plays a key role in their cooperative functions which, based on new findings, may be more extensive than originally envisaged. Gaining a better insight into organelle interplay and the targeting of shared proteins is pivotal to understanding how organelle cooperation contributes to human health and disease.
Collapse
Affiliation(s)
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Manheim, University of Heidelberg, 68167, Mannheim, Germany
| | | |
Collapse
|
47
|
Regulation of targeting determinants in interorganelle communication. Curr Opin Cell Biol 2019; 57:106-114. [PMID: 30807956 DOI: 10.1016/j.ceb.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023]
Abstract
The field of interorganelle communication is now established as a major aspect of intracellular organisation, with a profusion of material and signals exchanged between organelles. One way to address interorganelle communication is to study the interactions of the proteins involved, particularly targeting interactions, which are a key way to regulate activity. While most peripheral membrane proteins have single determinants for membrane targeting, proteins involved in interorganelle communication have more than one such determinant, sometimes as many as four, as in Vps13. Here we review the targeting determinants, showing how they can be relatively hard to find, how they are regulated, and how proteins integrate information from multiple targeting determinants.
Collapse
|
48
|
Das Y, Roose N, De Groef L, Fransen M, Moons L, Van Veldhoven PP, Baes M. Differential distribution of peroxisomal proteins points to specific roles of peroxisomes in the murine retina. Mol Cell Biochem 2019; 456:53-62. [PMID: 30604065 DOI: 10.1007/s11010-018-3489-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The retinal pathology in peroxisomal disorders suggests that peroxisomes are important to maintain retinal homeostasis and function. These ubiquitous cell organelles are mainly involved in lipid metabolism, which comprises α- and β-oxidation and ether lipid synthesis. Although peroxisomes were extensively studied in liver, their role in the retina still remains to be elucidated. As a first step in gaining more insight into the role of peroxisomes in retinal physiology, we performed immunohistochemical stainings, immunoblotting and enzyme activity measurements to reveal the distribution of peroxisomes and peroxisomal lipid metabolizing enzymes in the murine retina. Whereas peroxisomes were detected in every retinal layer, we found a clear differential distribution of the peroxisomal lipid metabolizing enzymes in the neural retina compared to the retinal pigment epithelium. In particular, the ABC transporters that transfer lipid substrates into the organelle as well as several enzymes of the β-oxidation pathway were enriched either in the neural retina or in the retinal pigment epithelium. In conclusion, our results strongly indicate that peroxisome function varies between different regions in the murine retina.
Collapse
Affiliation(s)
- Yannick Das
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Nele Roose
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Animal Physiology and Neurobiology, KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven -University of Leuven, 3000, Leuven, Belgium
| | - Myriam Baes
- Department of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven -University of Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
49
|
Li DW, Balamurugan S, Yang YF, Zheng JW, Huang D, Zou LG, Yang WD, Liu JS, Guan Y, Li HY. Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. SCIENCE ADVANCES 2019; 5:eaau3795. [PMID: 30729156 PMCID: PMC6353619 DOI: 10.1126/sciadv.aau3795] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/13/2018] [Indexed: 05/17/2023]
Abstract
Commercialization of algal lipids and biofuels is still impractical owing to the unavailability of lipogenic strains and lack of economically viable oil extraction strategies. Because lipogenesis is governed by multiple factors, success in generating industrial-suitable algal strains using conventional strategies has been limited. We report the discovery of a novel bZIP1 transcription factor, NobZIP1, whose overexpression results in a remarkable elevation of lipid accumulation and lipid secretion in a model microalga Nannochloropsis oceanica, without impairing other physiological properties. Chromatin immunoprecipitation-quantitative PCR analysis revealed that the key genes up- and down-regulated by NobZIP1 are involved in lipogenesis and cell wall polymer synthesis, respectively, which, in turn, induce lipid overproduction and secretion. Among these regulated genes, UDP-glucose dehydrogenase was shown to alter cell wall composition, thus also boosting lipid secretion. In summary, these results offer a comprehensive strategy for concurrent lipid overproduction and secretion, strongly increasing the commercial potential of microalgae.
Collapse
Affiliation(s)
- Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Feng Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
50
|
Das Y, Baes M. Peroxisomal Disorders and Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:317-321. [PMID: 31884631 DOI: 10.1007/978-3-030-27378-1_52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peroxisomal disorders are a group of inherited metabolic diseases, which can be incompatible with life in the postnatal period or allow survival into adulthood. Retinopathy is a recurrent feature in both the severely and mildly affected patients, which can be accompanied with other ophthalmological pathologies. Thanks to next-generation sequencing, patients originally identified with other inherited blinding diseases were reclassified as suffering from peroxisomal disorders. In addition, new peroxisomal gene defects or disease presentations exhibiting retinal degeneration were recently identified. The pathogenic mechanisms underlying retinopathy in peroxisomal disorders remain unresolved.
Collapse
Affiliation(s)
- Yannick Das
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Lab for Cell Metabolism, Leuven, Belgium
| | - Myriam Baes
- KU Leuven - University of Leuven, Department for Pharmaceutical and Pharmacological Sciences, Lab for Cell Metabolism, Leuven, Belgium.
| |
Collapse
|