1
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway early paused state intermediates as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. Nucleic Acids Res 2025; 53:gkae1135. [PMID: 39656915 PMCID: PMC11724273 DOI: 10.1093/nar/gkae1135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes (ECs) of RNAP in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway early paused state intermediates of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the Stl-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq., 2, Moscow, 123182, Russia
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Georgii Pobegalov
- Department of Physics and Astronomy, University College London, Gower street, London, WC1E 6BT, UK
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, Research Center of Nanobiotechnologies, Polytechnicheskaya, 29 B, Saint Petersburg, 195251,Russia
| |
Collapse
|
2
|
Arseniev A, Panfilov M, Pobegalov G, Potyseva A, Pavlinova P, Yakunina M, Lee J, Borukhov S, Severinov K, Khodorkovskii M. Single-molecule studies reveal the off-pathway elemental pause state as a target of streptolydigin inhibition of RNA polymerase and its dramatic enhancement by Gre factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.542125. [PMID: 37333075 PMCID: PMC10274647 DOI: 10.1101/2023.06.05.542125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Antibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected. Stl enhances the short-lived pauses associated with an off-pathway elemental paused state of the RNAP nucleotide addition cycle. Unexpectedly, we found that transcript cleavage factors GreA and GreB, which were thought to be Stl competitors, do not alleviate the streptolydigin-induced pausing; instead, they synergistically increase transcription inhibition by Stl. This is the first known instance of a transcriptional factor enhancing antibiotic activity. We propose a structural model of the EC-Gre-Stl complex that explains the observed Stl activities and provides insight into possible cooperative action of secondary channel factors and other antibiotics binding at the Stl-pocket. These results offer a new strategy for high-throughput screening for prospective antibacterial agents.
Collapse
Affiliation(s)
- Anatolii Arseniev
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mikhail Panfilov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Georgii Pobegalov
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Alina Potyseva
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Polina Pavlinova
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Jookyung Lee
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Sergei Borukhov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084-1489, USA
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | | |
Collapse
|
3
|
Janissen R, Eslami-Mossallam B, Artsimovitch I, Depken M, Dekker NH. High-throughput single-molecule experiments reveal heterogeneity, state switching, and three interconnected pause states in transcription. Cell Rep 2022; 39:110749. [PMID: 35476989 DOI: 10.1016/j.celrep.2022.110749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pausing by bacterial RNA polymerase (RNAp) is vital in the recruitment of regulatory factors, RNA folding, and coupled translation. While backtracking and intra-structural isomerization have been proposed to trigger pausing, our mechanistic understanding of backtrack-associated pauses and catalytic recovery remains incomplete. Using high-throughput magnetic tweezers, we examine the Escherichia coli RNAp transcription dynamics over a wide range of forces and NTP concentrations. Dwell-time analysis and stochastic modeling identify, in addition to a short-lived elemental pause, two distinct long-lived backtrack pause states differing in recovery rates. We identify two stochastic sources of transcription heterogeneity: alterations in short-pause frequency that underlies elongation-rate switching, and variations in RNA cleavage rates in long-lived backtrack states. Together with effects of force and Gre factors, we demonstrate that recovery from deep backtracks is governed by intrinsic RNA cleavage rather than diffusional Brownian dynamics. We introduce a consensus mechanistic model that unifies our findings with prior models.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Behrouz Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
4
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
5
|
Mosaei H, Zenkin N. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis. Nucleic Acids Res 2021; 49:8777-8784. [PMID: 34365509 PMCID: PMC8421135 DOI: 10.1093/nar/gkab675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
Transcribing RNA polymerase (RNAP) can fall into backtracking, phenomenon when the 3' end of the transcript disengages from the template DNA. Backtracking is caused by sequences of the nucleic acids or by misincorporation of erroneous nucleotides. To resume productive elongation backtracked complexes have to be resolved through hydrolysis of RNA. There is currently no consensus on the mechanism of catalysis of this reaction by Escherichia coli RNAP. Here we used Salinamide A, that we found inhibits RNAP catalytic domain Trigger Loop (TL), to show that the TL is required for RNA cleavage during proofreading of misincorporation events but plays little role during cleavage in sequence-dependent backtracked complexes. Results reveal that backtracking caused by misincorporation is distinct from sequence-dependent backtracking, resulting in different conformations of the 3' end of RNA within the active center. We show that the TL is required to transfer the 3' end of misincorporated transcript from cleavage-inefficient 'misincorporation site' into the cleavage-efficient 'backtracked site', where hydrolysis takes place via transcript-assisted catalysis and is largely independent of the TL. These findings resolve the controversy surrounding mechanism of RNA hydrolysis by E. coli RNA polymerase and indicate that the TL role in RNA cleavage has diverged among bacteria.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle Upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- To whom correspondence should be addressed. Tel: +44 0 1912083227; Fax: +44 0 1912083205;
| |
Collapse
|
6
|
Miropolskaya N, Kulbachinskiy A, Esyunina D. Factor-specific effects of mutations in the active site of RNA polymerase on RNA cleavage. Biochem Biophys Res Commun 2020; 523:165-170. [PMID: 31837805 DOI: 10.1016/j.bbrc.2019.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Bacterial RNA polymerase (RNAP) relies on the same active site for RNA synthesis and co-transcriptional RNA proofreading. The intrinsic RNA proofreading activity of RNAP can be greatly stimulated by Gre factors, which bind within the secondary channel and directly participate in the RNA cleavage reaction in the active site of RNAP. Here, we characterize mutations in Escherichia coli RNAP that differentially affect intrinsic and Gre-stimulated RNA cleavage. Substitution of a highly conserved arginine residue that contacts nascent RNA upstream of the active site strongly impairs intrinsic and GreA-dependent cleavage, without reducing GreA affinity or catalytic Mg2+ binding. In contrast, substitutions of several nonconserved residues at the Gre-interacting interface in the secondary channel primarily affect GreB-dependent cleavage, by decreasing both the catalytic rate and GreB affinity. The results suggest that RNAP residues not directly involved in contacts with the reacting RNA groups or catalytic ions play essential roles in RNA cleavage and can modulate its regulation by transcription factors.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
7
|
Riaz-Bradley A, James K, Yuzenkova Y. High intrinsic hydrolytic activity of cyanobacterial RNA polymerase compensates for the absence of transcription proofreading factors. Nucleic Acids Res 2020; 48:1341-1352. [PMID: 31840183 PMCID: PMC7026648 DOI: 10.1093/nar/gkz1130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The vast majority of organisms possess transcription elongation factors, the functionally similar bacterial Gre and eukaryotic/archaeal TFIIS/TFS. Their main cellular functions are to proofread errors of transcription and to restart elongation via stimulation of RNA hydrolysis by the active centre of RNA polymerase (RNAP). However, a number of taxons lack these factors, including one of the largest and most ubiquitous groups of bacteria, cyanobacteria. Using cyanobacterial RNAP as a model, we investigated alternative mechanisms for maintaining a high fidelity of transcription and for RNAP arrest prevention. We found that this RNAP has very high intrinsic proofreading activity, resulting in nearly as low a level of in vivo mistakes in RNA as Escherichia coli. Features of the cyanobacterial RNAP hydrolysis are reminiscent of the Gre-assisted reaction—the energetic barrier is similarly low, and the reaction involves water activation by a general base. This RNAP is resistant to ubiquitous and most regulatory pausing signals, decreasing the probability to go off-pathway and thus fall into arrest. We suggest that cyanobacterial RNAP has a specific Trigger Loop domain conformation, and isomerises easier into a hydrolytically proficient state, possibly aided by the RNA 3′-end. Cyanobacteria likely passed these features of transcription to their evolutionary descendants, chloroplasts.
Collapse
Affiliation(s)
- Amber Riaz-Bradley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Katherine James
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| |
Collapse
|
8
|
Agapov A, Esyunina D, Kulbachinskiy A. Gre-family factors modulate DNA damage sensing by Deinococcus radiodurans RNA polymerase. RNA Biol 2019; 16:1711-1720. [PMID: 31416390 DOI: 10.1080/15476286.2019.1656027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deinococcus radiodurans is a highly stress resistant bacterium that encodes universal as well as lineage-specific factors involved in DNA transcription and repair. However, the effects of DNA lesions on RNA synthesis by D. radiodurans RNA polymerase (RNAP) have never been studied. We investigated the ability of this RNAP to transcribe damaged DNA templates and demonstrated that various lesions significantly affect the efficiency and fidelity of RNA synthesis. DNA modifications that disrupt correct base-pairing can strongly inhibit transcription and increase nucleotide misincorporation by D. radiodurans RNAP. The universal transcription factor GreA and Deinococcus-specific factor Gfh1 stimulate RNAP stalling at various DNA lesions, depending on the type of the lesion and the presence of Mn2+ ions, abundant divalent cations in D. radiodurans. Furthermore, Gfh1 stimulates the action of the Mfd translocase, which removes transcription elongation complexes paused at the sites of DNA lesions. Thus, Gre-family factors in D. radiodurans might have evolved to increase the efficiency of DNA damage recognition by the transcription and repair machineries in this bacterium.
Collapse
Affiliation(s)
- Aleksei Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
9
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Sanders TJ, Lammers M, Marshall CJ, Walker JE, Lynch ER, Santangelo TJ. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin. Mol Microbiol 2019; 111:784-797. [PMID: 30592095 PMCID: PMC6417941 DOI: 10.1111/mmi.14191] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.
Collapse
Affiliation(s)
- Travis J. Sanders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Marshall Lammers
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Current address: Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado, 80303, USA
| | - Erin R. Lynch
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
11
|
Esyunina D, Kulbachinskiy A. Interactions in the active site of Deinococcus radiodurans RNA polymerase during RNA proofreading. Biochem Biophys Res Commun 2018; 509:161-166. [PMID: 30579600 DOI: 10.1016/j.bbrc.2018.12.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 11/25/2022]
Abstract
Co-transcriptional RNA proofreading by RNA polymerase (RNAP) is essential for accurate mRNA synthesis and reactivation of stalled transcription complexes, which can otherwise compromise genome integrity. RNAP from the stress-resistant bacterium Deinococcus radiodurans exhibits high levels of RNA cleavage in comparison with RNAP from Escherichia coli, which allows it to remove misincorporated nucleotides with high efficiency. Here, we show that the rate of RNA cleavage by D. radiodurans RNAP depends on the structure of the (mis)matched RNA 3'-nucleotide and its contacts with the active site. These interactions likely position the reactive phosphodiester bond in the cleavage-competent conformation, thus facilitating its hydrolysis catalyzed by metal ions in the active center. The universal RNA cleavage factor GreA largely alleviates defects in RNA cleavage caused by modifications in the RNA 3'-nucleotide or in its binding pocket in RNAP, suggesting that GreA functionally substitutes for these contacts. The results demonstrate that various RNAPs rely on a conserved mechanism for RNA proofreading, which can be modulated by changes in accessory parts of the active center.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.
| |
Collapse
|