1
|
Jena C, Chinnaraj S, Deolankar S, Matange N. Proteostasis modulates gene dosage evolution in antibiotic-resistant bacteria. eLife 2025; 13:RP99785. [PMID: 40073078 PMCID: PMC11903035 DOI: 10.7554/elife.99785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, eLife, 2021) shown that, in Escherichia coli, mutations at the mgrB locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the folA gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing folA and spanning hundreds of kilobases. This duplication was rare in wild-type E. coli. However, its frequency was elevated in a lon-knockout strain, altering the mutational landscape early during trimethoprim adaptation. We then exploit this system to investigate the relationship between trimethoprim pressure and folA copy number. During long-term evolution, folA duplications were frequently reversed. Reversal was slower under antibiotic pressure, first requiring the acquisition of point mutations in DHFR or its promoter. Unexpectedly, despite resistance-conferring point mutations, some populations under high trimethoprim pressure maintained folA duplication to compensate for low abundance DHFR mutants. We find that evolution of gene dosage depends on expression demand, which is generated by antibiotic and exacerbated by proteolysis of drug-resistant mutants of DHFR. We propose a novel role for proteostasis as a determinant of copy number evolution in antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chinmaya Jena
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Saillesh Chinnaraj
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Soham Deolankar
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and ResearchPuneIndia
| |
Collapse
|
2
|
Qiao J, Du D, Wang Y, Xi L, Zhu W, Morigen. Uncovering the effects of non-lethal oxidative stress on replication initiation in Escherichia coli. Gene 2025; 933:148992. [PMID: 39389326 DOI: 10.1016/j.gene.2024.148992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Cell cycle adaptability assists bacteria in response to adverse stress. The effect of oxidative stress on replication initiation in Escherichia coli remains unclear. This work examined the impact of exogenous oxidant and genetic mutation-mediated oxidative stress on replication initiation. We found that 0-0.5 mM H2O2 suppresses E. coli replication initiation in a concentration-dependent manner but does not lead to cell death. Deletion of antioxidant enzymes SodA-SodB, KatE, or AhpC results in delayed replication initiation. The antioxidant N-acetylcysteine (NAC) promotes replication initiation in ΔkatE and ΔsodAΔsodB mutants. We then explored the factors that mediate the inhibition of replication initiation by oxidative stress. MutY, a base excision repair DNA glycosylase, resists inhibition of replication initiation by H2O2. Lon protease deficiency eliminates inhibition of replication initiation mediated by exogenous H2O2 exposure but not by katE or sodA-sodB deletion. The absence of clpP and hslV further delays replication initiation in the ΔktaE mutant, whereas hflK deletion promotes replication initiation in the ΔkatE and ΔsodAΔsodB mutants. In conclusion, non-lethal oxidative stress inhibits replication initiation, and AAA+ proteases are involved and show flexible regulation in E. coli.
Collapse
Affiliation(s)
- Jiaxin Qiao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yao Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lingjun Xi
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
3
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease via ssDNA binding and local charge changes. J Biol Chem 2025; 301:107993. [PMID: 39542252 PMCID: PMC11719849 DOI: 10.1016/j.jbc.2024.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA + proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduce ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements, we find this change in activity correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA.
| |
Collapse
|
4
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease by effector binding and local charges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611642. [PMID: 39282454 PMCID: PMC11398467 DOI: 10.1101/2024.09.06.611642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA+ proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduces ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements we find that this change in activity is correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| | - Peter Chien
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| |
Collapse
|
5
|
Mindrebo JT, Lander GC. Structural and mechanistic studies on human LONP1 redefine the hand-over-hand translocation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600538. [PMID: 38979310 PMCID: PMC11230189 DOI: 10.1101/2024.06.24.600538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AAA+ enzymes use energy from ATP hydrolysis to remodel diverse cellular targets. Structures of substrate-bound AAA+ complexes suggest that these enzymes employ a conserved hand-over-hand mechanism to thread substrates through their central pore. However, the fundamental aspects of the mechanisms governing motor function and substrate processing within specific AAA+ families remain unresolved. We used cryo-electron microscopy to structurally interrogate reaction intermediates from in vitro biochemical assays to inform the underlying regulatory mechanisms of the human mitochondrial AAA+ protease, LONP1. Our results demonstrate that substrate binding allosterically regulates proteolytic activity, and that LONP1 can adopt a configuration conducive to substrate translocation even when the ATPases are bound to ADP. These results challenge the conventional understanding of the hand-over-hand translocation mechanism, giving rise to an alternative model that aligns more closely with biochemical and biophysical data on related enzymes like ClpX, ClpA, the 26S proteasome, and Lon protease.
Collapse
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational Biology, Scripps Research; La Jolla, CA, USA
| |
Collapse
|
6
|
Guzman BB, Son A, Litberg TJ, Huang Z, Dominguez D, Horowitz S. Emerging roles for G-quadruplexes in proteostasis. FEBS J 2023; 290:4614-4625. [PMID: 36017725 PMCID: PMC10071977 DOI: 10.1111/febs.16608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
How nucleic acids interact with proteins, and how they affect protein folding, aggregation, and misfolding is a still-evolving area of research. Considerable effort is now focusing on a particular structure of RNA and DNA, G-quadruplexes, and their role in protein homeostasis and disease. In this state-of-the-art review, we track recent reports on how G-quadruplexes influence protein aggregation, proteolysis, phase separation, and protein misfolding diseases, and pose currently unanswered questions in the advance of this scientific field.
Collapse
Affiliation(s)
- Bryan B Guzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Theodore J Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
7
|
Son A, Huizar Cabral V, Huang Z, Litberg TJ, Horowitz S. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci U S A 2023; 120:e2216308120. [PMID: 37155907 PMCID: PMC10194009 DOI: 10.1073/pnas.2216308120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Maintaining the health of the proteome is a critical cellular task. Recently, we found G-quadruplex (G4) nucleic acids are especially potent at preventing protein aggregation in vitro and could at least indirectly improve the protein folding environment of Escherichia coli. However, the roles of G4s in protein folding were not yet explored. Here, through in vitro protein folding experiments, we discover that G4s can accelerate protein folding by rescuing kinetically trapped intermediates to both native and near-native folded states. Time-course folding experiments in E. coli further demonstrate that these G4s primarily improve protein folding quality in E. coli as opposed to preventing protein aggregation. The ability of a short nucleic acid to rescue protein folding opens up the possibility of nucleic acids and ATP-independent chaperones to play considerable roles in dictating the ultimate folding fate of proteins.
Collapse
Affiliation(s)
- Ahyun Son
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Veronica Huizar Cabral
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Zijue Huang
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Theodore J. Litberg
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| | - Scott Horowitz
- Department of Chemistry & Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO80208
| |
Collapse
|
8
|
Structure, Substrate Specificity and Role of Lon Protease in Bacterial Pathogenesis and Survival. Int J Mol Sci 2023; 24:ijms24043422. [PMID: 36834832 PMCID: PMC9961632 DOI: 10.3390/ijms24043422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Proteases are the group of enzymes that carry out proteolysis in all forms of life and play an essential role in cell survival. By acting on specific functional proteins, proteases affect the transcriptional and post-translational pathways in a cell. Lon, FtsH, HslVU and the Clp family are among the ATP-dependent proteases responsible for intracellular proteolysis in bacteria. In bacteria, Lon protease acts as a global regulator, governs an array of important functions such as DNA replication and repair, virulence factors, stress response and biofilm formation, among others. Moreover, Lon is involved in the regulation of bacterial metabolism and toxin-antitoxin systems. Hence, understanding the contribution and mechanisms of Lon as a global regulator in bacterial pathogenesis is crucial. In this review, we discuss the structure and substrate specificity of the bacterial Lon protease, as well as its ability to regulate bacterial pathogenesis.
Collapse
|
9
|
Zhang A, Lebrun R, Espinosa L, Galinier A, Pompeo F. PrkA is an ATP-dependent protease that regulates sporulation in Bacillus subtilis. J Biol Chem 2022; 298:102436. [PMID: 36041628 PMCID: PMC9512850 DOI: 10.1016/j.jbc.2022.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.
Collapse
Affiliation(s)
- Ao Zhang
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Plateforme Protéomique de l'IMM, Marseille Protéomique (MaP), CNRS FR 3479, Aix-Marseille Université, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
10
|
Ropelewska M, Gross MH, Konieczny I. DNA and Polyphosphate in Directed Proteolysis for DNA Replication Control. Front Microbiol 2020; 11:585717. [PMID: 33123115 PMCID: PMC7566177 DOI: 10.3389/fmicb.2020.585717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
The strict control of bacterial cell proliferation by proteolysis is vital to coordinate cell cycle processes and to adapt to environmental changes. ATP-dependent proteases of the AAA + family are molecular machineries that contribute to cellular proteostasis. Their activity is important to control the level of various proteins, including those that are essential for the regulation of DNA replication. Since the process of proteolysis is irreversible, the protease activity must be tightly regulated and directed toward a specific substrate at the exact time and space in a cell. In our mini review, we discuss the impact of phosphate-containing molecules like DNA and inorganic polyphosphate (PolyP), accumulated during stress, on protease activities. We describe how the directed proteolysis of essential replication proteins contributes to the regulation of DNA replication under normal and stress conditions in bacteria.
Collapse
Affiliation(s)
- Malgorzata Ropelewska
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Gross MH, Konieczny I. Polyphosphate induces the proteolysis of ADP-bound fraction of initiator to inhibit DNA replication initiation upon stress in Escherichia coli. Nucleic Acids Res 2020; 48:5457-5466. [PMID: 32282902 PMCID: PMC7261185 DOI: 10.1093/nar/gkaa217] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/29/2022] Open
Abstract
The decision whether to replicate DNA is crucial for cell survival, not only to proliferate in favorable conditions, but also to adopt to environmental changes. When a bacteria encounters stress, e.g. starvation, it launches the stringent response, to arrest cell proliferation and to promote survival. During the stringent response a vast amount of polymer composed of phosphate residues, i.e. inorganic polyphosphate (PolyP) is synthesized from ATP. Despite extensive research on PolyP, we still lack the full understanding of the PolyP role during stress. It is also elusive what is the mechanism of DNA replication initiation arrest in starved Escherichia coli cells. Here, we show that during stringent response PolyP activates Lon protease to degrade selectively the replication initiaton protein DnaA bound to ADP, but not ATP. In contrast to DnaA-ADP, the DnaA-ATP does not interact with PolyP, but binds to dnaA promoter to block dnaA transcription. The systems controlling the ratio of nucleotide states of DnaA continue to convert DnaA-ATP to DnaA-ADP, which is proteolysed by Lon, thereby resulting in the DNA replication initiation arrest. The uncovered regulatory mechanism interlocks the PolyP-dependent protease activation with the ATP/ADP cycle of dual-functioning protein essential for bacterial cell proliferation.
Collapse
Affiliation(s)
- Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, ul. Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
12
|
Marizcurrena JJ, Herrera LM, Costábile A, Morales D, Villadóniga C, Eizmendi A, Davyt D, Castro-Sowinski S. Validating biochemical features at the genome level in the Antarctic bacterium Hymenobacter sp. strain UV11. FEMS Microbiol Lett 2020; 366:5545592. [PMID: 31397847 DOI: 10.1093/femsle/fnz177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
We present experimental data that complement and validate some biochemical features at the genome level in the UVC-resistant Antarctic bacterium Hymenobacter sp. UV11 strain. The genome was sequenced, assembled and annotated. It has 6 096 246 bp, a GC content of 60.6% and 5155 predicted genes. The secretome analysis, by combining in silico predictions with shotgun proteomics data, showed that UV11 strain produces extracellular proteases and carbohydrases with potential biotechnological uses. We observed the formation of outer membrane vesicles, mesosomes and carbon-storage compounds by using transmission electron microscopy. The in silico analysis of the genome revealed the presence of genes involved in the metabolism of glycogen-like molecules and starch. By HPLC-UV-Vis analysis and 1H-NMR spectra, we verified that strain UV11 produces xanthophyll-like carotenoids such as 2'-hydroxyflexixanthin, and the in silico analysis showed that this bacterium has genes involved in the biosynthesis of cathaxanthin, zeaxanthin and astaxanthin. We also found genes involved in the repair of UV-damaged DNA such as a photolyase, the nucleotide excision repair system and the production of ATP-dependent proteases that are important cellular components involved in the endurance to physiological stresses. This information will help us to better understand the ecological role played by Hymenobacter strains in the extreme Antarctic environment.
Collapse
Affiliation(s)
- Juan José Marizcurrena
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Lorena M Herrera
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Alicia Costábile
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Danilo Morales
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Carolina Villadóniga
- Hydrolytic Enzymes Laboratory, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| | - Agustina Eizmendi
- Organic Chemistry Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Danilo Davyt
- Organic Chemistry Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, 11800 Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Biochemistry and Molecular Biology, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay.,Hydrolytic Enzymes Laboratory, Faculty of Sciences, Universidad de la República, Igua 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
13
|
Hua C, Wang T, Shao X, Xie Y, Huang H, Liu J, Zhang W, Zhang Y, Ding Y, Jiang L, Wang X, Deng X. Pseudomonas syringaedual‐function protein Lon switches between virulence and metabolism by acting as bothDNA‐binding transcriptional regulator and protease in different environments. Environ Microbiol 2020; 22:2968-2988. [DOI: 10.1111/1462-2920.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Canfeng Hua
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Tingting Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Hao Huang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Jingui Liu
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Weitong Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingchao Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yiqing Ding
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Lin Jiang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen Guangdong China
| |
Collapse
|
14
|
Muselius B, Sukumaran A, Yeung J, Geddes-McAlister J. Iron Limitation in Klebsiella pneumoniae Defines New Roles for Lon Protease in Homeostasis and Degradation by Quantitative Proteomics. Front Microbiol 2020; 11:546. [PMID: 32390954 PMCID: PMC7194016 DOI: 10.3389/fmicb.2020.00546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/12/2020] [Indexed: 01/24/2023] Open
Abstract
Nutrient adaptation is key in limiting environments for the promotion of microbial growth and survival. In microbial systems, iron is an essential component for many cellular processes, and bioavailability varies greatly among different conditions. In the bacterium, Klebsiella pneumoniae, the impact of iron limitation is known to alter transcriptional expression of iron-acquisition pathways and influence secretion of iron-binding siderophores, however, a comprehensive view of iron limitation at the protein level remains to be defined. Here, we apply a mass-spectrometry-based quantitative proteomics strategy to profile the global impact of iron limitation on the cellular proteome and extracellular environment (secretome) of K. pneumoniae. Our data define the impact of iron on proteins involved in transcriptional regulation and emphasize the modulation of a vast array of proteins associated with iron acquisition, transport, and binding. We also identify proteins in the extracellular environment associated with conventional and non-conventional modes of secretion, as well as vesicle release. In particular, we demonstrate a new role for Lon protease in promoting iron homeostasis outside of the cell. Characterization of a Lon protease mutant in K. pneumoniae validates roles in bacterial growth, cell division, and virulence, and uncovers novel degradation candidates of Lon protease associated with improved iron utilization strategies in the absence of the enzyme. Overall, we provide evidence of unique connections between Lon and iron in a bacterial system and suggest a new role for Lon protease in the extracellular environment during nutrient limitation.
Collapse
|
15
|
Salmonella expresses foreign genes during infection by degrading their silencer. Proc Natl Acad Sci U S A 2020; 117:8074-8082. [PMID: 32209674 DOI: 10.1073/pnas.1912808117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The heat-stable nucleoid structuring (H-NS, also referred to as histone-like nucleoid structuring) protein silences transcription of foreign genes in a variety of Gram-negative bacterial species. To take advantage of the products encoded in foreign genes, bacteria must overcome the silencing effects of H-NS. Because H-NS amounts are believed to remain constant, overcoming gene silencing has largely been ascribed to proteins that outcompete H-NS for binding to AT-rich foreign DNA. However, we report here that the facultative intracellular pathogen Salmonella enterica serovar Typhimurium decreases H-NS amounts 16-fold when inside macrophages. This decrease requires both the protease Lon and the DNA-binding virulence regulator PhoP. The decrease in H-NS abundance reduces H-NS binding to foreign DNA, allowing transcription of foreign genes, including those required for intramacrophage survival. The purified Lon protease degraded free H-NS but not DNA-bound H-NS. By displacing H-NS from DNA, the PhoP protein promoted H-NS proteolysis, thereby de-repressing foreign genes-even those whose regulatory sequences are not bound by PhoP. The uncovered mechanism enables a pathogen to express foreign virulence genes during infection without the need to evolve binding sites for antisilencing proteins at each foreign gene.
Collapse
|
16
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
17
|
Asymmetric division yields progeny cells with distinct modes of regulating cell cycle-dependent chromosome methylation. Proc Natl Acad Sci U S A 2019; 116:15661-15670. [PMID: 31315982 DOI: 10.1073/pnas.1906119116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cell cycle-regulated methylation state of Caulobacter DNA mediates the temporal control of transcriptional activation of several key regulatory proteins. Temporally controlled synthesis of the CcrM DNA methyltransferase and Lon-mediated proteolysis restrict CcrM to a specific time in the cell cycle, thereby allowing the maintenance of the hemimethylated state of the chromosome during the progression of DNA replication. We determined that a chromosomal DNA-based platform stimulates CcrM degradation by Lon and that the CcrM C terminus both binds to its DNA substrate and is recognized by the Lon protease. Upon asymmetric cell division, swarmer and stalked progeny cells employ distinct mechanisms to control active CcrM. In progeny swarmer cells, CcrM is completely degraded by Lon before its differentiation into a replication-competent stalked cell later in the cell cycle. In progeny stalked cells, however, accumulated CcrM that has not been degraded before the immediate initiation of DNA replication is sequestered to the cell pole. Single-molecule imaging demonstrated physical anticorrelation between sequestered CcrM and chromosomal DNA, thus preventing DNA remethylation. The distinct control of available CcrM in progeny swarmer and stalked cells serves to protect the hemimethylated state of DNA during chromosome replication, enabling robustness of cell cycle progression.
Collapse
|
18
|
Tian W, Sun C, Zheng M, Harmer JR, Yu M, Zhang Y, Peng H, Zhu D, Deng Z, Chen SL, Mobli M, Jia X, Qu X. Efficient biosynthesis of heterodimeric C 3-aryl pyrroloindoline alkaloids. Nat Commun 2018; 9:4428. [PMID: 30356123 PMCID: PMC6200733 DOI: 10.1038/s41467-018-06528-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/11/2018] [Indexed: 12/04/2022] Open
Abstract
Many natural products contain the hexahydropyrrolo[2, 3-b]indole (HPI) framework. HPI containing chemicals exhibit various biological activities and distinguishable structural arrangement. This structural complexity renders chemical synthesis very challenging. Here, through investigating the biosynthesis of a naturally occurring C3-aryl HPI, naseseazine C (NAS-C), we identify a P450 enzyme (NascB) and reveal that NascB catalyzes a radical cascade reaction to form intramolecular and intermolecular carbon–carbon bonds with both regio- and stereo-specificity. Surprisingly, the limited freedom is allowed in specificity to generate four types of C3-aryl HPI scaffolds, and two of them were not previously observed. By incorporating NascB into an engineered strain of E. coli, we develop a whole-cell biocatalysis system for efficient production of NAS-C and 30 NAS analogs. Interestingly, we find that some of these analogs exhibit potent neuroprotective properties. Thus, our biocatalytic methodology offers an efficient and simple route to generate difficult HPI framework containing chemicals. The hexahydropyrrolo[2, 3-b]indole (HPI) framework is found in many natural products. Here, the authors discover a P450 enzyme and develop a whole-cell biocatalysis system that produces the HPI naseseazine C (NAS-C) and 30 NAS-C analogs, several of which show neuroprotective properties.
Collapse
Affiliation(s)
- Wenya Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Chenghai Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Mei Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mingjia Yu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Yanan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Haidong Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Shi-Lu Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Xinying Jia
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
19
|
He L, Luo D, Yang F, Li C, Zhang X, Deng H, Zhang JR. Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerg Microbes Infect 2018; 7:149. [PMID: 30120231 PMCID: PMC6098112 DOI: 10.1038/s41426-018-0148-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/16/2018] [Accepted: 06/23/2018] [Indexed: 02/05/2023]
Abstract
The Lon protease selectively degrades abnormal proteins or certain normal proteins in response to environmental and cellular conditions in many prokaryotic and eukaryotic organisms. However, the mechanism(s) behind the substrate selection of normal proteins remains largely unknown. In this study, we identified 10 new substrates of F. tularensis Lon from a total of 21 candidate substrates identified in our previous work, the largest number of novel Lon substrates from a single study. Cross-species degradation of these and other known Lon substrates revealed that human Lon is unable to degrade many bacterial Lon substrates, suggestive of a “organism-adapted” substrate selection mechanism for the natural Lon variants. However, individually replacing the N, A, and P domains of human Lon with the counterparts of bacterial Lon did not enable the human protease to degrade the same bacterial Lon substrates. This result showed that the “organism-adapted” substrate selection depends on multiple domains of the Lon proteases. Further in vitro proteolysis and mass spectrometry analysis revealed a similar substrate cleavage pattern between the bacterial and human Lon variants, which was exemplified by predominant representation of leucine, alanine, and other hydrophobic amino acids at the P(−1) site within the substrates. These observations suggest that the Lon proteases select their substrates at least in part by fine structural matching with the proteins in the same organisms.
Collapse
Affiliation(s)
- Lihong He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Dongyang Luo
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Fan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Chunhao Li
- Philip Research Institute for Oral Health, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Abstract
Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| |
Collapse
|
21
|
Tanner AW, Carabetta VJ, Dubnau D. ClpC and MecA, components of a proteolytic machine, prevent Spo0A-P-dependent transcription without degradation. Mol Microbiol 2018; 108:178-186. [PMID: 29446505 PMCID: PMC5897911 DOI: 10.1111/mmi.13928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/23/2023]
Abstract
In Bacillus subtilis, a proteolytic machine composed of MecA, ClpC and ClpP degrades the transcription factor ComK, controlling its accumulation during growth. MecA also inhibits sporulation and biofilm formation by down-regulating spoIIG and sinI, genes that are dependent for their transcription on the phosphorylated protein Spo0A-P. Additionally, MecA has been shown to interact in vitro with Spo0A. Although the inhibitory effect on transcription requires MecA's binding partner ClpC, inhibition is not accompanied by the degradation of Spo0A, pointing to a previously unsuspected regulatory mechanism involving these proteins. Here, we further investigate the MecA and ClpC effects on Spo0A-P-dependent transcription. We show that MecA inhibits the transcription of several Spo0A-P activated genes, but fails to de-repress several Spo0A-P repressed promoters. This demonstrates that MecA and ClpC do not act by preventing the binding of Spo0A-P to its target promoters. Consistent with this, MecA by itself has no effect in vitro on the transcription from PspoIIG while the addition of both MecA and ClpC has a strong inhibitory effect. A complex of MecA and ClpC likely binds to Spo0A-P on its target promoters, preventing the activation of transcription. Thus, components of a degradative machine have been harnessed to directly repress transcription.
Collapse
Affiliation(s)
- Andrew W. Tanner
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|