1
|
Khan S, Khatri DK. In-silico screening to identify phytochemical inhibitor for hP2X7: A crucial inflammatory cell death mediator in Parkinson's disease. Comput Biol Chem 2025; 115:108285. [PMID: 39615401 DOI: 10.1016/j.compbiolchem.2024.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 02/26/2025]
Abstract
The second most prevalent neurological disease among the elderly is Parkinson's disease, where neuroinflammation plays a significant role in its pathology. Purinergic signaling mediated by P2X7 plays a significant role in neuroinflammation and pyroptotic cell death pathways through mediators like NLRP3, Caspase-1, and Caspase-3, instigating pyroptotic cell death. No synthetic agent advanced in late-stage clinical trials due to their inefficacy and toxicity. Hence, in this study, we aimed to identify a phytoconstituent inhibitor against the hP2X7 receptor to ameliorate the inflammatory processes involved. To achieve this aim, we performed homology modeling of the receptor and screened phytoconstituents from a library of over 3500 commercially available phytoconstituents. Molecular docking through the Maestro program of the Schrödinger suite was performed considering evaluation parameters like docking score, docking pose and spatial arrangement, and MMGBSA binding free energy. Predictive pharmacokinetic and toxicity profiling was done using tools like QikProp, ADMETLab 2.0, SwissADME, and Protox-II. Molecular dynamic simulation was performed using Schrödinger's Desmond tool for the top 10 phytoconstituents. The complex stability was evaluated based on the ligand- and protein-RMSD, protein-ligand contact stability over a simulation period of 100 ns, protein RMSF, and ligand properties like RMSF, radius of gyration, intramolecular hydrogen bonding, and SASA. Based on the studies' results, silychristin, silybin, rosmarinic acid, nordihydroguaiaretic acid, and aurantiamide were shortlisted as the top 5 phytoconstituents against hP2X7. Further in-vitro and in-vivo studies would offer better clarity on the mechanism of action of these agents specifically related to pyroptotic cell death in various disease models.
Collapse
Affiliation(s)
- Sabiya Khan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan 303121, India.
| |
Collapse
|
2
|
Ma XB, Yue CX, Liu Y, Yang Y, Wang J, Yang XN, Huang LD, Zhu MX, Hattori M, Li CZ, Yu Y, Guo CR. A shared mechanism for TNP-ATP recognition by members of the P2X receptor family. Comput Struct Biotechnol J 2024; 23:295-308. [PMID: 38173879 PMCID: PMC10762375 DOI: 10.1016/j.csbj.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
P2X receptors (P2X1-7) are non-selective cation channels involved in many physiological activities such as synaptic transmission, immunological modulation, and cardiovascular function. These receptors share a conserved mechanism to sense extracellular ATP. TNP-ATP is an ATP derivative acting as a nonselective competitive P2X antagonist. Understanding how it occupies the orthosteric site in the absence of agonism may help reveal the key allostery during P2X gating. However, TNP-ATP/P2X complexes (TNP-ATP/human P2X3 (hP2X3) and TNP-ATP/chicken P2X7 (ckP2X7)) with distinct conformations and different mechanisms of action have been proposed. Whether these represent species and subtype variations or experimental differences remains unclear. Here, we show that a common mechanism of TNP-ATP recognition exists for the P2X family members by combining enhanced conformation sampling, engineered disulfide bond analysis, and covalent occupancy. In this model, the polar triphosphate moiety of TNP-ATP interacts with the orthosteric site, while its TNP-moiety is deeply embedded in the head and dorsal fin (DF) interface, creating a restrictive allostery in these two domains that results in a partly enlarged yet ion-impermeable pore. Similar results were obtained from multiple P2X subtypes of different species, including ckP2X7, hP2X3, rat P2X2 (rP2X2), and human P2X1 (hP2X1). Thus, TNP-ATP uses a common mechanism for P2X recognition and modulation by restricting the movements of the head and DF domains which are essential for P2X activation. This knowledge is applicable to the development of new P2X inhibitors.
Collapse
Affiliation(s)
- Xiao-Bo Ma
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Liu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Na Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Dong Huang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Ye Yu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Run Guo
- School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Sheng D, Yue CX, Jin F, Wang Y, Ichikawa M, Yu Y, Guo CR, Hattori M. Structural insights into the orthosteric inhibition of P2X receptors by non-ATP analog antagonists. eLife 2024; 12:RP92829. [PMID: 38578670 PMCID: PMC10997329 DOI: 10.7554/elife.92829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
P2X receptors are extracellular ATP-gated ion channels that form homo- or heterotrimers and consist of seven subtypes. They are expressed in various tissues, including neuronal and nonneuronal cells, and play critical roles in physiological processes such as neurotransmission, inflammation, pain, and cancer. As a result, P2X receptors have attracted considerable interest as drug targets, and various competitive inhibitors have been developed. However, although several P2X receptor structures from different subtypes have been reported, the limited structural information of P2X receptors in complex with competitive antagonists hampers the understanding of orthosteric inhibition, hindering the further design and optimization of those antagonists for drug discovery. We determined the cryogenic electron microscopy (cryo-EM) structures of the mammalian P2X7 receptor in complex with two classical competitive antagonists of pyridoxal-5'-phosphate derivatives, pyridoxal-5'-phosphate-6-(2'-naphthylazo-6'-nitro-4',8'-disulfonate) (PPNDS) and pyridoxal phosphate-6-azophenyl-2',5'-disulfonic acid (PPADS), and performed structure-based mutational analysis by patch-clamp recording as well as molecular dynamics (MD) simulations. Our structures revealed the orthosteric site for PPADS/PPNDS, and structural comparison with the previously reported apo- and ATP-bound structures showed how PPADS/PPNDS binding inhibits the conformational changes associated with channel activation. In addition, structure-based mutational analysis identified key residues involved in the PPNDS sensitivity of P2X1 and P2X3, which are known to have higher affinity for PPADS/PPNDS than other P2X subtypes.
Collapse
Affiliation(s)
- Danqi Sheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Chen-Xi Yue
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Yao Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan UniversityShanghaiChina
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical UniversityNanjingChina
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Zhang X, Sun MY, Zhang X, Guo CR, Lei YT, Wang WH, Fan YZ, Cao P, Li CZ, Wang R, Li XH, Yu Y, Yang XN. Dynamic recognition of naloxone, morphine and endomorphin1 in the same pocket of µ-opioid receptors. Front Mol Biosci 2022; 9:925404. [PMID: 36052166 PMCID: PMC9424762 DOI: 10.3389/fmolb.2022.925404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Morphine, the most widely used analgesic, relieves severe pain by activating the μ-opioid receptor (MOR), whereas naloxone, with only slight structural changes compared to morphine, exhibits inhibitory effect, and is used to treat opioid abuse. The mechanism by which the MOR distinguishes between the two is unclear. Molecular dynamics (MD) simulations on a 1-μs time scale and metadynamics-enhanced conformational sampling are used here to determine the different interactions of these two ligands with MOR: morphine adjusted its pose by continuously flipping deeper into the pocket, whereas naloxone failed to penetrate deeper because its allyl group conflicts with several residues of MOR. The endogenous peptide ligand endomorphin-1 (EM-1) underwent almost no significant conformational changes during the MD simulations. To validate these processes, we employed GIRK4S143T, a MOR-activated Gβγ-protein effector, in combination with mutagenesis and electrophysiological recordings. We verified the role of some key residues in the dynamic recognition of naloxone and morphine and identified the key residue I322, which leads to differential recognition of morphine and naloxone while assisting EM-1 in activating MOR. Reducing the side chain size of I322 (MORI322A) transformed naloxone from an inhibitor directly into an agonist of MOR, and I322A also significantly attenuated the potency of MOR on EM-1, confirming that binding deep in the pocket is critical for the agonistic effect of MOR. This finding reveals a dynamic mechanism for the response of MOR to different ligands and provides a basis for the discovery of new ligands for MOR at the atomic level.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Meng-Yang Sun
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang-Run Guo
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yun-Tao Lei
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Hua Li
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Na Yang
- Department of Basic Medicine and Clinical Pharmacy and State Key laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Oken AC, Krishnamurthy I, Savage JC, Lisi NE, Godsey MH, Mansoor SE. Molecular Pharmacology of P2X Receptors: Exploring Druggable Domains Revealed by Structural Biology. Front Pharmacol 2022; 13:925880. [PMID: 35784697 PMCID: PMC9248971 DOI: 10.3389/fphar.2022.925880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular ATP is a critical signaling molecule that is found in a wide range of concentrations across cellular environments. The family of nonselective cation channels that sense extracellular ATP, termed P2X receptors (P2XRs), is composed of seven subtypes (P2X1-P2X7) that assemble as functional homotrimeric and heterotrimeric ion channels. Each P2XR is activated by a distinct concentration of extracellular ATP, spanning from high nanomolar to low millimolar. P2XRs are implicated in a variety of physiological and pathophysiological processes in the cardiovascular, immune, and central nervous systems, corresponding to the spatiotemporal expression, regulation, and activation of each subtype. The therapeutic potential of P2XRs is an emerging area of research in which structural biology has seemingly exceeded medicinal chemistry, as there are several published P2XR structures but currently no FDA-approved drugs targeting these ion channels. Cryogenic electron microscopy is ideally suited to facilitate structure-based drug design for P2XRs by revealing and characterizing novel ligand-binding sites. This review covers structural elements in P2XRs including the extracellular orthosteric ATP-binding site, extracellular allosteric modulator sites, channel pore, and cytoplasmic substructures, with an emphasis on potential therapeutic ligand development.
Collapse
Affiliation(s)
- Adam C. Oken
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Ipsita Krishnamurthy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Jonathan C. Savage
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Nicolas E. Lisi
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Michael H. Godsey
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
| | - Steven E. Mansoor
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Ma XF, Wang TT, Wang WH, Guan L, Guo CR, Li XH, Lei YT, Fan YZ, Yang XN, Hattori M, Nureki O, Zhu MX, Yu Y, Tian Y, Wang J. The long β2,3-sheets encoded by redundant sequences play an integral role in the channel function of P2X7 receptors. J Biol Chem 2022; 298:102002. [PMID: 35504351 PMCID: PMC9163701 DOI: 10.1016/j.jbc.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
P2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened β2- and β3-sheets and their linker (loop β2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor. We show that deletion of this longer structural element leads to the loss of P2X7 function. Furthermore, by combining mutagenesis, chimera construction, surface expression, and protein stability analysis, we found that the deletion of the longer β2,3-loop affects P2X7 surface expression but, more importantly, that this loop affects channel gating of P2X7. We propose that the longer β2,3-sheets may have a negative regulatory effect on a loop on the head domain and on the structural element formed by E171 and its surrounding regions. Understanding the role of the unique structure of the P2X7 receptor in the gating process will aid in the development of selective drugs targeting this subtype.
Collapse
Affiliation(s)
- Xue-Fei Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China; School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ting-Ting Wang
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Li Guan
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yun-Tao Lei
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Na Yang
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Sun MY, Zhang X, Yu PC, Liu D, Yang Y, Cui WW, Yang XN, Lei YT, Li XH, Wang WH, Cao P, Wang HS, Zhu MX, Li CZ, Wang R, Fan YZ, Yu Y. Vanilloid agonist-mediated activation of TRPV1 channels requires coordinated movement of the S1-S4 bundle rather than a quiescent state. Sci Bull (Beijing) 2022; 67:1062-1076. [PMID: 36546250 DOI: 10.1016/j.scib.2022.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 01/07/2023]
Abstract
Transient receptor potential vanilloid1 (TRPV1) channel plays an important role in a wide range of physiological and pathological processes, and a comprehensive understanding of TRPV1 gating will create opportunities for therapeutic intervention. Recent incredible advances in cryo-electron microscopy (cryo-EM) have yielded high-resolution structures of all TRPV subtypes (TRPV1-6) and all of them share highly conserved six transmembrane (TM) domains (S1-S6). As revealed by the open structures of TRPV1 in the presence of a bound vanilloid agonist (capsaicin or resiniferatoxin), TM helicesS1 to S4 form a bundle that remains quiescent during channel activation, highlighting differences in the gating mechanism of TRPV1 and voltage-gated ion channels. Here, however, we argue that the structural dynamics rather than quiescence of S1-S4 domains is necessary for capsaicin-mediated activation of TRPV1. Using fluorescent unnatural amino acid (flUAA) incorporation and voltage-clamp fluorometry (VCF) analysis, we directly observed allostery of the S1-S4 bundle upon capsaicin binding. Covalent occupation of VCF-identified sites, single-channel recording, cell apoptosis analysis, and exploration of the role of PSFL828, a novel non-vanilloid agonist we identified, have collectively confirmed the essential role of this coordinated S1-S4 motility in capsaicin-mediated activation of TRPV1. This study concludes that, in contrast to cryo-EM structural studies, vanilloid agonists are also required for S1-S4 movement during TRPV1 activation. Redefining the gating process of vanilloid agonists and the discovery of new non-vanilloid agonists will allow the evaluation of new strategies aimed at the development of TRPV1 modulators.
Collapse
Affiliation(s)
- Meng-Yang Sun
- School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Zhang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng-Cheng Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Di Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Wen Cui
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Na Yang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yun-Tao Lei
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Hua Li
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Rui Wang
- School of Life Sciences and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai 200062, China.
| | - Ye Yu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Immadisetty K, Alenciks J, Kekenes-Huskey PM. Modulation of P2X4 pore closure by magnesium, potassium, and ATP. Biophys J 2022; 121:1134-1142. [PMID: 35248546 PMCID: PMC9034312 DOI: 10.1016/j.bpj.2022.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
The P2X4 receptor plays a prominent role in cellular responses to extracellular ATP. Through classical all-atom molecular dynamics (MD) simulations totaling 24 μs we have investigated how metal-complexed ATP stabilizes the channel's open state and prevents its closing. We have identified two metal-binding sites, Mg2+ and potassium K+, one at the intersection of the three subunits in the ectodomain (MBS1) and the second one near the ATP-binding site (MBS2), similar to those characterized in Gulf Coast P2X. Our data indicate that when Mg2+ and K+ ions are complexed with ATP, the channel is locked into an open state. Interestingly, irrespective of the number of bound ATP molecules, Mg2+ ions bound to the MBS2 impeded the collapse of the open-state protein to a closed state by stabilizing the ATP-protein interactions. However, when Mg2+ in the MBS2 was replaced with K+ ions, as might be expected when in equilibrium with an extracellular solution, the interactions between the subunits were weakened and the pore collapsed. This collapse was apparent when fewer than two ATPs were bound to MBS2 in the presence of K+. Therefore, the different capacities of common cations to stabilize the channel may underlie a mechanism governing P2X4 channel gating in physiological systems. This study therefore provides structural insights into the differential modulation of ATP activation of P2X4 by Mg2+ and K+.
Collapse
|
9
|
Yu PC, Liu D, Han ZX, Liang F, Hao CY, Lei YT, Guo CR, Wang WH, Li XH, Yang XN, Li CZ, Yu Y, Fan YZ. Thymopentin-Mediated Inhibition of Cancer Stem Cell Stemness Enhances the Cytotoxic Effect of Oxaliplatin on Colon Cancer Cells. Front Pharmacol 2022; 13:779715. [PMID: 35242031 PMCID: PMC8886222 DOI: 10.3389/fphar.2022.779715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Thymopentin (TP5) is an immunomodulatory pentapeptide that has been widely used in malignancy patients with immunodeficiency due to radiotherapy and chemotherapy. Here, we propose that TP5 directly inhibits the stemness of colon cancer cells HCT116 and therefore enhances the cytotoxicity of oxaliplatin (OXA) in HCT116 cells. In the absence of serum, TP5 was able to induce cancer stemness reduction in cultured HCT116 cells and significantly reduced stemness-related signals, such as the expression of surface molecular markers (CD133, CD44 and CD24) and stemness-related genes (ALDH1, SOX2, Oct-4 and Nanog), and resulted in altered Wnt/β-catenin signaling. Acetylcholine receptors (AchRs) are implicated in this process. OXA is a common chemotherapeutic agent with therapeutic effects in various cancers. Although TP5 had no direct effect on the proliferation of HCT116, this pentapeptide significantly increased the sensitivity of HCT116 to OXA, where the effect of TP5 on the stemness of colon cancer cells through stimulation of AchRs may contribute to this process. Our results provide a promising strategy for increasing the sensitivity of colon cancer cells to chemotherapeutic agents by incorporating immunomodulatory peptides.
Collapse
Affiliation(s)
- Peng-Cheng Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Liu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zeng-Xiang Han
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Three Departments of Oncology, Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Fang Liang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cui-Yun Hao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Tao Lei
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Na Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying-Zhe Fan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Cui WW, Wang SY, Zhang YQ, Wang Y, Fan YZ, Guo CR, Li XH, Lei YT, Wang WH, Yang XN, Hattori M, Li CZ, Wang J, Yu Y. P2X3-selective mechanism of Gefapixant, a drug candidate for the treatment of refractory chronic cough. Comput Struct Biotechnol J 2022; 20:1642-1653. [PMID: 35465163 PMCID: PMC9014320 DOI: 10.1016/j.csbj.2022.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanism by which Gefapixant/AF-219 selectively acts on the P2X3 receptor is unclear. The negative allosteric site of AF-219 at P2X3 is also a potent allosteric site for other P2X subtypes. The selectivity of AF-219 for P2X3 is determined by the accessibility of binding site and the internal shape of this pocket. The finding will provide new perspectives for drug design against P2X3-mediated diseases such as RCC.
Gefapixant/AF-219, a selective inhibitor of the P2X3 receptor, is the first new drug other than dextromethorphan to be approved for the treatment of refractory chronic cough (RCC) in nearly 60 years. To date, seven P2X subtypes (P2X1-7) activated by extracellular ATP have been cloned, and subtype selectivity of P2X inhibitors is a prerequisite for reducing side effects. We previously identified the site and mechanism of action of Gefapixant/AF-219 on the P2X3 receptor, which occupies a pocket consisting of the left flipper (LF) and lower body (LB) domains. However, the mechanism by which AF-219 selectively acts on the P2X3 receptor is unknown. Here, we combined mutagenesis, chimera construction, molecular simulations, covalent occupation and chemical synthesis, and find that the negative allosteric site of AF-219 at P2X3 is also present in other P2X subtypes, at least for P2X1, P2X2 and P2X4. By constructing each chimera of AF-219 sensitive P2X3 and insensitive P2X2 subtypes, the insensitive P2X2 subtype was made to acquire the inhibitory properties of AF-219 and AF-353, an analog of AF-219 with higher affinity. Our results suggest that the selectivity of AF-219/AF-353 for P2X3 over the other P2X subtypes is determined by a combination of the accessibility of P2X3 binding site and the internal shape of this pocket, a finding that could provide new perspectives for drug design against P2X3-mediated diseases such as RCC, idiopathic pulmonary fibrosis, hypertension and overactive bladder disorder.
Collapse
|
11
|
Sheng D, Hattori M. Recent progress in the structural biology of P2X receptors. Proteins 2022; 90:1779-1785. [PMID: 35023590 DOI: 10.1002/prot.26302] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
Abstract
P2X receptors are ATP-gated trimeric nonselective cation channels that are important for various physiological and pathological processes, including synaptic transmission, pain perception, immune regulation, and apoptosis. Accordingly, they attract a wide range of interest as drug targets, such as those for chronic cough, neuropathic pain, and depression. After the zebrafish P2X4 receptor structure was reported in 2009, various other P2X receptor structures have been reported, extending our understanding of the molecular mechanisms of P2X receptors. This review article describes the recent progress on understanding the structures and mechanisms of P2X receptors, especially of the mechanisms underlying ATP binding and conformational changes during the gating cycle. In addition, since several antagonists for different P2X subtypes have entered into clinical trials, this review also summarizes the binding sites and regulatory mechanisms of these antagonists, which may contribute to new strategies of targeting P2X receptors for drug discovery.
Collapse
Affiliation(s)
- Danqi Sheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chen PF, Ma XF, Sun LF, Tian Y, Fan YZ, Li P, Xiao Z, Zhu MX, Guo CR, Li C, Yu Y, Wang J. A conserved residue in the P2X4 receptor has a nonconserved function in ATP recognition. J Biol Chem 2021; 296:100655. [PMID: 33901491 PMCID: PMC8166750 DOI: 10.1016/j.jbc.2021.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Highly conserved amino acids are generally anticipated to have similar functions across a protein superfamily, including that of the P2X ion channels, which are gated by extracellular ATP. However, whether and how these functions are conserved becomes less clear when neighboring amino acids are not conserved. Here, we investigate one such case, focused on the highly conserved residue from P2X4, E118 (rat P2X4 numbering, rP2X4), a P2X subtype associated with human neuropathic pain. When we compared the crystal structures of P2X4 with those of other P2X subtypes, including P2X3, P2X7, and AmP2X, we observed a slightly altered side-chain orientation of E118. We used protein chimeras, double-mutant cycle analysis, and molecular modeling to reveal that E118 forms specific contacts with amino acids in the "beak" region, which facilitates ATP binding to rP2X4. These contacts are not present in other subtypes because of sequence variance in the beak region, resulting in decoupling of this conserved residue from ATP recognition and/or channel gating of P2X receptors. Our study provides an example of a conserved residue with a specific role in functional proteins enabled by adjacent nonconserved residues. The unique role established by the E118-beak region contact provides a blueprint for the development of subtype-specific inhibitors of P2X4.
Collapse
Affiliation(s)
- Ping-Fang Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Fei Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Liang-Fei Sun
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ying-Zhe Fan
- Putuo Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chang-Run Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China.
| | - Ye Yu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China.
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
13
|
Zhang WJ, Zhu ZM, Liu ZX. The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 2020; 158:104875. [PMID: 32407956 DOI: 10.1016/j.phrs.2020.104875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Neuropathic pain (NPP) is a common symptom of most diseases in clinic, which seriously affects the mental health of patients and brings certain pain to patients. Due to its pathological mechanism is very complicated, and thus, its treatment has been one of the challenges in the field of medicine. Therefore, exploring the pathogenesis and treatment approach of NPP has aroused the interest of many researchers. ATP is an important energy information substance, which participates in the signal transmission in the body. The P2 × 4 receptor (P2 × 4R) is dependent on ATP ligand-gated cationic channel receptor, which can be activated by ATP and plays an important role in the transmission of information in the nervous system and the formation of pain. In this paper, we provide a comprehensive review of the structure and function of the P2 × 4R gene. We also discuss the pathogenesis of NPP and the intrinsic relationship between P2 × 4R and NPP. Moreover, we explore the pharmacological properties of P2 × 4R antagonists or inhibitors used as targeted therapies for NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Zeng-Xu Liu
- Basic Medicine, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| |
Collapse
|
14
|
Heterologous Expression and Patch-Clamp Recording of P2X Receptors in HEK293 Cells. Methods Mol Biol 2020; 2041:261-273. [PMID: 31646495 DOI: 10.1007/978-1-4939-9717-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
P2X receptors (P2XRs) are ligand-gated ion channels gated by extracellular adenosine 5'-triphosphate (ATP) and play a critical role in mediating ATP-induced purinergic signaling in physiological and pathological processes. Heterologous expression of P2XR in human embryonic kidney 293 (HEK293) cells and measurement of P2XR-mediated currents using patch-clamp recording technique have been widely used to study the biophysical and pharmacological properties of these receptors. Combination of electrophysiology with site-directed mutagenesis and structural information has shed light on the molecular basis for receptor activation and mechanisms of actions by receptor antagonists and modulators. It is anticipated that such methodologies will continue helping us to provide more mechanistic understanding of P2XRs and to test novel receptor antagonists and allosteric modulators for therapeutical purposes. In this chapter, we describe protocols of transiently or stably expressing the P2XR in HEK293 cells and measuring P2XR-mediated currents by using whole-cell recording.
Collapse
|
15
|
Sun LF, Liu Y, Wang J, Huang LD, Yang Y, Cheng XY, Fan YZ, Zhu MX, Liang H, Tian Y, Wang HS, Guo CR, Yu Y. Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. J Biol Chem 2019; 294:19589-19603. [PMID: 31727741 PMCID: PMC6926468 DOI: 10.1074/jbc.ra119.009959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Although the extracellular ATP-gated cation channel purinergic receptor P2X5 is widely expressed in heart, skeletal muscle, and immune and nervous systems in mammals, little is known about its functions and channel-gating activities. This lack of knowledge is due to P2X5's weak ATP responses in several mammalian species, such as humans, rats, and mice. WT human P2X5 (hP2X5Δ328-349) does not respond to ATP, whereas a full-length variant, hP2X5 (hP2X5-FL), containing exon 10 encoding the second hP2X5 transmembrane domain (TM2), does. However, although rat P2X5 (rP2X5) has a full-length TM2, ATP induces only weak currents in rP2X5, which prompted us to investigate the mechanism underlying this small ATP response. Here, we show that single replacements of specific rP2X5 residues with the corresponding residues in hP2X5 (S191F or F195H) significantly enhance the current amplitude of rP2X5. Using a combination of engineered disulfide cross-linking, single-channel recording, and molecular modeling, we interrogated the effects of S191F and F195H substitutions on the allostery of the left flipper (LF) domain. On the basis of our findings, we propose that the bound ATP-induced distinct allostery of the LF domain with that of other functional subtypes has caused the weak ATP response of rP2X5 receptors. The findings of our study provide the prerequisite for future transgenic studies on the physiological and pathological functions of P2X5 receptors.
Collapse
Affiliation(s)
- Liang-Fei Sun
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Dong Huang
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Yang Cheng
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying-Zhe Fan
- Putuo District Center Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai 200026, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Chang-Run Guo
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ye Yu
- Institute of Medical Sciences and Department of Pharmacology and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Metadynamics to Enhance Sampling in Biomolecular Simulations. Methods Mol Biol 2019. [PMID: 31396904 DOI: 10.1007/978-1-4939-9608-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Molecular dynamics is a powerful simulation method to provide detailed atomic-scale insight into a range of biological processes including protein folding, biochemical reactions, ligand binding, and many others. Over the last several decades, enhanced sampling methods have been developed to address the large separation in time scales between a molecular dynamics simulation (usually microseconds or shorter) and the time scales of biological processes (often orders of magnitude longer). This chapter specifically focuses on the metadynamics family of methods, which achieves enhanced sampling through the introduction of a history-dependent bias potential that is based on one or more slow degrees of freedom, called collective variables. We introduce the method and its recent variants related to biomolecular studies and then discuss frontier areas of the method. A large part of this chapter is devoted to helping new users of the method understand how to choose metadynamics parameters properly and apply the method to their system of interest.
Collapse
|
17
|
Li B, Wang J, Cheng X, Liu Y, Yang Y, Yang X, Guo C, Niu Y, Cao P, Lu X, Zhu MX, Tian Y, Yu Y. Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors. Sci Bull (Beijing) 2018; 63:1616-1625. [PMID: 36658853 DOI: 10.1016/j.scib.2018.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Abstract
P2X receptors are a family of extracellular ATP-gated trimeric cation channels that is widely distributed in human tissues. Quite some drug candidates targeting P2X receptors have entered into preclinical or main phases of clinical trials, but many of them failed due to low subtype-selectivity or species differences in pharmacological activities between human and experimental animals. Here, we identified the distinct inhibitory efficacies of NF110, a competitive inhibitor, between the rat (rP2X3) and human (hP2X3) P2X3 receptors. We demonstrated that this difference is determined by two amino acids located in the dorsal fin (DF) domain of P2X3 receptors. As revealed by mutagenesis, metadynamics, and covalent modification, NF110-mediated rP2X3 inhibition may be through a filling in the cavity formed by the DF, left flipper (LF) and lower body (LB) to partially, rather than fully, occupy the ATP-binding pocket. Moreover, substitution of residues located in the DF and/or LF domains of the rP2X2 receptor, a NF110-insensitive subtype, with the equivalent amino acids of rP2X3, bestowed the sensitivity of rP2X2 to NF110. The critical roles of the DF and LF domains in channel gating of P2X and low conservativity in residue sequences of those two domains raise the possibility that small molecules differentially interacting with the residues of the DF and LF domains of different P2X receptors may modulate channel's activity in a subtype-selective manner. However, the possible species-specificity of P2X inhibitors/modulators makes it more complex when interpreting the preclinical data into clinical researches. Nevertheless, our data provide new insights into the subtype-selectivity of competitive inhibitors and their distinct potencies in the human and experimental animals, both of which are extremely important in the drug discovery of P2X receptors.
Collapse
Affiliation(s)
- Bin Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyang Cheng
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Liu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Yang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaona Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Changrun Guo
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youya Niu
- Department of Cell Biology and Genetics, Hunan University of Medicine, Huaihua 418000, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Michael X Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ye Yu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
18
|
Allsopp RC, Dayl S, Bin Dayel A, Schmid R, Evans RJ. Mapping the Allosteric Action of Antagonists A740003 and A438079 Reveals a Role for the Left Flipper in Ligand Sensitivity at P2X7 Receptors. Mol Pharmacol 2018; 93:553-562. [PMID: 29535152 PMCID: PMC5896373 DOI: 10.1124/mol.117.111021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 01/07/2023] Open
Abstract
P2X7 receptor (P2X7R) activation requires ∼100-fold higher concentrations of ATP than other P2X receptor (P2XR) subtypes. Such high levels are found during cellular stress, and P2X7Rs consequently contribute to a range of pathophysiological conditions. We have used chimeric and mutant P2X7Rs, coupled with molecular modeling, to produce a validated model of the binding mode of the subtype-selective antagonist A438079 at an intersubunit allosteric site. Within the allosteric site large effects on antagonist action were found for point mutants of residues F88A, D92A, F95A, and F103A that were conserved or similar between sensitive/insensitive P2XR subtypes, suggesting that these side-chain interactions were not solely responsible for high-affinity antagonist binding. Antagonist sensitivity was increased with mutations that remove the bulk of side chains around the center of the binding pocket, suggesting that the dimensions of the pocket make a significant contribution to selectivity. Chimeric receptors swapping the left flipper (around the orthosteric site) reduced both ATP and antagonist sensitivity. Point mutations within this region highlighted the contribution of a P2X7R-specific aspartic acid residue (D280) that modeling suggests forms a salt bridge with the lower body region of the receptor. The D280A mutant removing this charge increased ATP potency 15-fold providing a new insight into the low ATP sensitivity of the P2X7R. The ortho- and allosteric binding sites form either side of the β-strand Y291-E301 adjacent to the left flipper. This structural linking may explain the contribution of the left flipper to both agonist and antagonist action.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Sudad Dayl
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Anfal Bin Dayel
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Ralf Schmid
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| | - Richard J Evans
- Department of Molecular and Cell Biology (R.C.A., S.D., A.B.D., R.S., R.J.E.) and Leicester Institute of Structural and Chemical Biology (R.S.), University of Leicester, Leicester, United Kingdom; and Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq (S.D.)
| |
Collapse
|
19
|
Abstract
Allosteric modulation provides exciting opportunities for drug discovery of enzymes, ion channels, and G protein-coupled receptors. As cation channels gated by extracellular ATP, P2X receptors have attracted wide attention as new drug targets. Although small molecules targeting P2X receptors have entered into clinical trials for rheumatoid arthritis, cough, and pain, negative allosteric modulation of these receptors remains largely unexplored. Here, combining X-ray crystallography, computational modeling, and functional studies of channel mutants, we identified a negative allosteric site on P2X3 receptors, fostered by the left flipper (LF), lower body (LB), and dorsal fin (DF) domains. Using two structurally analogous subtype-specific allosteric inhibitors of P2X3, AF-353 and AF-219, the latter being a drug candidate under phase II clinical trials for refractory chronic cough and idiopathic pulmonary fibrosis, we defined the molecular interactions between the drugs and receptors and the mechanism by which allosteric changes in the LF, DF, and LB domains modulate ATP activation of P2X3. Our detailed characterization of this druggable allosteric site should inspire new strategies to develop P2X3-specific allosteric modulators for clinical use.
Collapse
|