1
|
Dubois JC, Bonnell E, Filion A, Frion J, Zimmer S, Riaz Khan M, Teplitz GM, Casimir L, Méthot É, Marois I, Idrissou M, Jacques PÉ, Wellinger RJ, Maréchal A. The single-stranded DNA-binding factor SUB1/PC4 alleviates replication stress at telomeres and is a vulnerability of ALT cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2419712122. [PMID: 39772744 PMCID: PMC11745411 DOI: 10.1073/pnas.2419712122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies. ALT cells also have high telomeric replication stress (RS) enhanced by fork-stalling structures (R-loops and G4s) and altered chromatin states. In ALT cells, telomeric RS promotes telomere elongation but above a certain threshold becomes detrimental to cell survival. Manipulating RS at telomeres has thus been proposed as a therapeutic strategy against ALT cancers. Through analysis of genome-wide CRISPR fitness screens, we identified ALT-specific vulnerabilities and describe here our characterization of the roles of SUB1, a ssDNA-binding protein, in telomere stability. SUB1 depletion increases RS at ALT telomeres, profoundly impairing ALT cell growth without impacting telomerase-positive cells. During RS, SUB1 is recruited to stalled forks and ALT telomeres via its ssDNA-binding domain. This recruitment is potentiated by RPA depletion, suggesting that these factors may compete for ssDNA. The viability of ALT cells and their resilience toward RS also requires ssDNA binding by SUB1. SUB1 depletion accelerates cell death induced by FANCM depletion, triggering unsustainable levels of telomeric damage in ALT cells. Finally, combining SUB1 depletion with RS-inducing drugs rapidly induces replication catastrophe in ALT cells. Altogether, our work identifies SUB1 as an ALT susceptibility with roles in the mitigation of RS at ALT telomeres and suggests advanced therapeutic strategies for a host of still poorly managed cancers.
Collapse
Affiliation(s)
- Jean-Christophe Dubois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Erin Bonnell
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Amélie Filion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Julie Frion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Muhammad Riaz Khan
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Gabriela M. Teplitz
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Élie Méthot
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Isabelle Marois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Mouhamed Idrissou
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Raymund J. Wellinger
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
| |
Collapse
|
2
|
Salgado S, Abreu PL, Moleirinho B, Guedes DS, Larcombe L, Azzalin CM. Human PC4 supports telomere stability and viability in cells utilizing the alternative lengthening of telomeres mechanism. EMBO Rep 2024; 25:5294-5315. [PMID: 39468351 PMCID: PMC11624207 DOI: 10.1038/s44319-024-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer cells with an activated Alternative Lengthening of Telomeres (ALT) mechanism elongate telomeres via homology-directed repair. Sustained telomeric replication stress is an essential trigger of ALT activity; however, it can lead to cell death if not properly restricted. By analyzing publicly available data from genome-wide CRISPR KO screenings, we have identified the multifunctional protein PC4 as a novel factor essential for ALT cell viability. Depletion of PC4 results in rapid ALT cell death, while telomerase-positive cells show minimal effects. PC4 depletion induces replication stress and telomere fragility primarily in ALT cells, and increases ALT activity. PC4 binds to telomeric DNA in cells, and its binding can be enhanced by telomeric replication stress. Finally, a mutant PC4 with partly impaired single stranded DNA binding activity is capable to localize to telomeres and suppress ALT activity and telomeric replication stress. We propose that PC4 supports ALT cell viability, at least partly, by averting telomere dysfunction. Further studies of PC4 interactions at ALT telomeres may hold promise for innovative therapies to eradicate ALT cancers.
Collapse
Affiliation(s)
- Sara Salgado
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Patricia L Abreu
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Beatriz Moleirinho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Daniela S Guedes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Lee Larcombe
- Apexomic, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
- TessellateBio Ltd, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
| | - Claus M Azzalin
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal.
- Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal.
| |
Collapse
|
3
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
4
|
Belachew B, Gao J, Byrd AK, Raney KD. Hepatitis C virus nonstructural protein NS3 unfolds viral G-quadruplex RNA structures. J Biol Chem 2022; 298:102486. [PMID: 36108740 PMCID: PMC9582721 DOI: 10.1016/j.jbc.2022.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver-related diseases and hepatocellular carcinoma. The helicase domain of one of the nonstructural proteins of HCV, NS3 (nonstructural protein 3), is essential for viral replication; however, its specific biological role is still under investigation. Here, we set out to determine the interaction between a purified recombinant full length NS3 and synthetic guanine-rich substrates that represent the conserved G-quadruplex (G4)-forming sequences in the HCV-positive and HCV-negative strands. We performed fluorescence anisotropy binding, G4 reporter duplex unwinding, and G4RNA trapping assays to determine the binding and G4 unfolding activity of NS3. Our data suggest that NS3 can unfold the conserved G4 structures present within the genome and the negative strand of HCV. Additionally, we found the activity of NS3 on a G4RNA was reduced significantly in the presence of a G4 ligand. The ability of NS3 to unfold HCV G4RNA could imply a novel biological role of the viral helicase in replication.
Collapse
Affiliation(s)
- Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
5
|
Crooke ST, Seth PP, Vickers TA, Liang XH. The Interaction of Phosphorothioate-Containing RNA Targeted Drugs with Proteins Is a Critical Determinant of the Therapeutic Effects of These Agents. J Am Chem Soc 2020; 142:14754-14771. [PMID: 32786803 DOI: 10.1021/jacs.0c04928] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent progress in understanding phosphorothioate antisense oligonucleotide (PS-ASO) interactions with proteins has revealed that proteins play deterministic roles in the absorption, distribution, cellular uptake, subcellular distribution, molecular mechanisms of action, and toxicity of PS-ASOs. Similarly, such interactions can alter the fates of many intracellular proteins. These and other advances have opened new avenues for the medicinal chemistry of PS-ASOs and research on all elements of the molecular pharmacology of these molecules. These advances have recently been reviewed. In this Perspective article, we summarize some of those learnings, the general principles that have emerged, and a few of the exciting new questions that can now be addressed.
Collapse
Affiliation(s)
- Stanley T Crooke
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Timothy A Vickers
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| | - Xue-Hai Liang
- Ionis Pharmaceuticals, Inc., Carlsbad, California 92010-6670, United States
| |
Collapse
|
6
|
Vickers TA, Migawa MT, Seth PP, Crooke ST. Interaction of ASOs with PC4 Is Highly Influenced by the Cellular Environment and ASO Chemistry. J Am Chem Soc 2020; 142:9661-9674. [PMID: 32374993 DOI: 10.1021/jacs.0c01808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The activity of PS-ASOs is strongly influenced by association with both inter- and intracellular proteins. The sequence, chemical nature, and structure of the ASO can have profound influences on the interaction of PS-ASOs with specific proteins. A more thorough understanding of how these pharmacological agents interact with various proteins and how chemical modifications, sequence, and structure influence interactions with proteins is needed to inform future ASO design efforts. To better understand the chemistry of PS-ASO interactions, we have focused on human positive cofactor 4 (PC4). Although several studies have investigated the in vitro binding properties of PC4 with endogenous nucleic acids, little is known about the chemistry of interaction of PS-ASOs with this protein. Here we examine in detail the impact of ASO backbone chemistry, 2'-modifications, and buffer environment on the binding affinity of PC4. In addition, using site-directed mutagenesis, we identify those amino acids that are specifically required for ASO binding interactions, and by substitution of abasic nucleotides we identify the positions on the ASO that most strongly influence affinity for PC4. Finally, to confirm that the interactions observed in vitro are biologically relevant, we use a recently developed complementation reporter system to evaluate the kinetics and subcellular localization of the interaction of ASO and PC4 in live cells.
Collapse
Affiliation(s)
- Timothy A Vickers
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Michael T Migawa
- Department of Medicinal ChemistryIONIS Pharmaceuticals, Inc.2855 Gazelle CourtCarlsbadCalifornia92010United States
| | - Punit P Seth
- Department of Medicinal ChemistryIONIS Pharmaceuticals, Inc.2855 Gazelle CourtCarlsbadCalifornia92010United States
| | - Stanley T Crooke
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
7
|
The Functional Consequences of Eukaryotic Topoisomerase 1 Interaction with G-Quadruplex DNA. Genes (Basel) 2020; 11:genes11020193. [PMID: 32059547 PMCID: PMC7073998 DOI: 10.3390/genes11020193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase I in eukaryotic cells is an important regulator of DNA topology. Its catalytic function is to remove positive or negative superhelical tension by binding to duplex DNA, creating a reversible single-strand break, and finally religating the broken strand. Proper maintenance of DNA topological homeostasis, in turn, is critically important in the regulation of replication, transcription, DNA repair, and other processes of DNA metabolism. One of the cellular processes regulated by the DNA topology and thus by Topoisomerase I is the formation of non-canonical DNA structures. Non-canonical or non-B DNA structures, including the four-stranded G-quadruplex or G4 DNA, are potentially pathological in that they interfere with replication or transcription, forming hotspots of genome instability. In this review, we first describe the role of Topoisomerase I in reducing the formation of non-canonical nucleic acid structures in the genome. We further discuss the interesting recent discovery that Top1 and Top1 mutants bind to G4 DNA structures in vivo and in vitro and speculate on the possible consequences of these interactions.
Collapse
|
8
|
Onel B, Wu G, Sun D, Lin C, Yang D. Electrophoretic Mobility Shift Assay and Dimethyl Sulfate Footprinting for Characterization of G-Quadruplexes and G-Quadruplex-Protein Complexes. Methods Mol Biol 2019; 2035:201-222. [PMID: 31444751 DOI: 10.1007/978-1-4939-9666-7_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplexes are globular nucleic acid secondary structures which occur throughout the human genome under physiological conditions. There is accumulating evidence supporting G-quadruplex involvement in a number of important aspects of genome functions, including transcription, replication, and genomic stability, and that protein and enzyme recognition of G-quadruplexes may represent a key event to regulate physiological or pathological pathways. Two important techniques to study G-quadruplexes and their protein interactions are the electrophoretic mobility shift assay (EMSA) and dimethyl sulfate (DMS) footprinting assay. EMSA, one of the most sensitive and robust methods for studying the DNA-protein interactions, can be used to determine the binding parameters and relative affinities of a protein for the G-quadruplex. DMS footprinting is a powerful assay for the initial characterization of G-quadruplexes, which can be used to deduce the guanine bases involved in the formation of G-tetrads under physiological salt conditions. DMS footprinting can also reveal important information in G-quadruplex-protein complexes on protein contacts and regional changes in DNA G-quadruplex upon protein binding. In this paper, we will provide a detailed protocol for the EMSA and DMS footprinting assays for characterization of G-quadruplexes and G-quadruplex-protein complexes. Expected outcomes and references to extensions of the method will be further discussed.
Collapse
Affiliation(s)
- Buket Onel
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Guanhui Wu
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Daekyu Sun
- University of Arizona, College of Pharmacy, Tucson, AZ, USA.,BIO5 Institute, Tucson, AZ, USA.,Arizona Cancer Center, Tucson, AZ, USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Cancer Research, West Lafayette, IN, USA. .,Purdue Institute for Drug Discovery, West Lafayette, IN, USA.
| |
Collapse
|
9
|
Sub1/PC4, a multifaceted factor: from transcription to genome stability. Curr Genet 2017; 63:1023-1035. [DOI: 10.1007/s00294-017-0715-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
|