1
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
2
|
Perooli FM, Wilkinson KA, Pring K, Hanley JG. An essential role for the RNA helicase DDX6 in NMDA receptor-dependent gene silencing and dendritic spine shrinkage. Sci Rep 2024; 14:3066. [PMID: 38321143 PMCID: PMC10847504 DOI: 10.1038/s41598-024-53484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387. Not all gene silencing events are modulated by S387 phosphorylation, and the mechanisms that govern the selection of specific mRNAs for silencing downstream of S387 phosphorylation are unknown. Here, we show that NMDAR-dependent S387 phosphorylation causes a rapid and transient increase in the association of Ago2 with Limk1, but not Apt1 mRNA. The specific increase in Limk1 mRNA binding to Ago2 requires recruitment of the helicase DDX6 to RISC. Furthermore, we show that DDX6 is required for NMDAR-dependent silencing of Limk1 via miR-134, but not Apt1 via miR-138, and is essential for NMDAR-dependent spine shrinkage. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression of specific genes to control dendritic spine morphology.
Collapse
Affiliation(s)
- Fathima M Perooli
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kate Pring
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jonathan G Hanley
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
5
|
Zhao X, Ding J, Pan H, Zhang S, Pan D, Yu H, Ye Z, Hua T. Anodal and cathodal tDCS modulate neural activity and selectively affect GABA and glutamate syntheses in the visual cortex of cats. J Physiol 2020; 598:3727-3745. [PMID: 32506434 DOI: 10.1113/jp279340] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The present study showed that anodal and cathodal transcranial direct current stimulation (tDCS) can respectively increase and decrease the amplitude of visually evoked field potentials in the stimulated visual cortex of cats, with the effect lasting for ∼60-70 min. We directly measured tDCS-induced changes in the concentration of inhibitory and excitatory neurotransmitters in the visual cortex using the enzyme-linked immunosorbent assay method and showed that anodal and cathodal tDCS can selectively decrease the concentration of GABA and glutamate in the stimulated cortical area. Anodal and cathodal tDCS can selectively inhibit the synthesis of GABA and glutamate by suppressing the expression of GABA- and glutamate-synthesizing enzymes, respectively. ABSTRACT Transcranial direct current stimulation (tDCS) evokes long-lasting neuronal excitability in the target brain region. The underlying neural mechanisms remain poorly understood. The present study examined tDCS-induced alterations in neuronal activities, as well as the concentration and synthesis of GABA and glutamate (GLU), in area 21a (A21a) of cat visual cortex. Our analysis showed that anodal and cathodal tDCS respectively enhanced and suppressed neuronal activities in A21a, as indicated by a significantly increased and decreased amplitude of visually evoked field potentials (VEPs). The tDCS-induced effect lasted for ∼60-70 min. By contrast, sham tDCS had no significant impact on the VEPs in A21a. On the other hand, the concentration of GABA, but not that of GLU, in A21a significantly decreased after anodal tDCS relative to sham tDCS, whereas the concentration of GLU, but not that of GABA, in A21a significantly decreased after cathodal tDCS relative to sham tDCS. Furthermore, the expression of GABA-synthesizing enzymes GAD65 and GAD67 in A21a significantly decreased in terms of both mRNA and protein concentrations after anodal tDCS relative to sham tDCS, whereas that of GLU-synthesizing enzyme glutaminase (GLS) did not change significantly after anodal tDCS. By contrast, both mRNA and protein concentrations of GLS in A21a significantly decreased after cathodal tDCS relative to sham tDCS, whereas those of GAD65/GAD67 showed no significant change after cathodal tDCS. Taken together, these results indicate that anodal and cathodal tDCS may selectively reduce GABA and GLU syntheses and thus respectively enhance and suppress neuronal excitability in the stimulated brain area.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Huijun Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Deng Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
6
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
7
|
AMPAR Palmitoylation Tunes Synaptic Strength: Implications for Synaptic Plasticity and Disease. J Neurosci 2019; 39:5040-5043. [PMID: 31243093 DOI: 10.1523/jneurosci.0055-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/21/2022] Open
|
8
|
Metabotropic functions of the NMDA receptor and an evolving rationale for exploring NR2A-selective positive allosteric modulators for the treatment of autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:142-160. [PMID: 30481555 DOI: 10.1016/j.pnpbp.2018.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
NMDA receptors are widely distributed throughout the brain and major therapeutic challenges include targeting specific NMDA receptor subtypes while preserving spatial and temporal specificity during their activation. The NR2A-subunit containing NMDA receptor is implicated in regulating synchronous oscillatory output of cortical pyramidal neurons, which may be disturbed in clinical presentations of autism spectrum disorder (ASD). Because NR2A-selective positive allosteric modulators (PAMs) preserve spatial and temporal selectivity while activating this subpopulation of receptors, they represent a promising strategy to address neocortical circuit abnormalities in ASD. In addition to promoting Ca2+ entry and membrane depolarization, diverse metabotropic effects of NMDA receptor activation on signal transduction pathways occur within the cell, some of which depend on alignment of protein binding partners. For example, NMDA receptor agonist interventions attenuate impaired sociability in transgenic mice with 'loss-of-function' mutations of the Shank family of scaffolding proteins, which highlights the necessity of a carefully orchestrated alignment of protein binding partners in the excitatory synapse. The current Review considers metabotropic functions of the NMDA receptor that could play a role in sociability and the pathogenesis of ASD (e.g., mTOR signaling), in addition to its more familiar ionotropic functions, and provides a rationale for therapeutic exploration of NR2A-selective PAMs.
Collapse
|
9
|
Trabucchi M, Mategot R. Subcellular Heterogeneity of the microRNA Machinery. Trends Genet 2018; 35:15-28. [PMID: 30503571 DOI: 10.1016/j.tig.2018.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023]
Abstract
Different methods have recently been developed to understand the subcellular localization and role of microRNAs (miRNAs) as well as small RNAs associated with Argonaute (AGO) proteins. The heterogeneity of the protein complexes associated with miRNAs, along with their subcellular localization, provides clues into their biochemical mechanism of function. Subcellular diversity indicates that miRNAs localized to different cellular regions could have different functions, including transcriptional regulation on chromatin or post-transcriptional control, providing global regulation of gene expression by miRNAs. Herein, I review the current knowledge and most recent discoveries relating to the subcellular function of miRNAs and other AGO-associated small RNAs, revealing the emergence of a multitude of functions of the miRNA pathway to control different steps of the gene expression program(s).
Collapse
Affiliation(s)
- Michele Trabucchi
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France.
| | - Raphael Mategot
- Inserm U1065, C3M, Team Control of Gene Expression (10), Nice, France; Université Côte d'Azur, Inserm, C3M, Nice, France
| |
Collapse
|
10
|
Rajgor D, Sanderson TM, Amici M, Collingridge GL, Hanley JG. NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO J 2018; 37:e97943. [PMID: 29712715 PMCID: PMC5983126 DOI: 10.15252/embj.201797943] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins to form the RNA-induced silencing complex (RISC), underpinning a powerful mechanism for fine-tuning protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by modulating the translation of proteins involved in dendritic spine morphogenesis or synaptic transmission. However, it is unknown how NMDAR stimulation stimulates RISC activity to rapidly repress translation of synaptic proteins. We show that NMDAR stimulation transiently increases Akt-dependent phosphorylation of Ago2 at S387, which causes an increase in binding to GW182 and a rapid increase in translational repression of LIMK1 via miR-134. Furthermore, NMDAR-dependent down-regulation of endogenous LIMK1 translation in dendrites and dendritic spine shrinkage requires phospho-regulation of Ago2 at S387. AMPAR trafficking and hippocampal LTD do not involve S387 phosphorylation, defining this mechanism as a specific pathway for structural plasticity. This work defines a novel mechanism for the rapid transduction of NMDAR stimulation into miRNA-mediated translational repression to control dendritic spine morphology.
Collapse
Affiliation(s)
- Dipen Rajgor
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, UK
| | - Thomas M Sanderson
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Mascia Amici
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Graham L Collingridge
- Centre for Synaptic Plasticity and School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Smith KR, Rajgor D, Hanley JG. Differential regulation of the Rac1 GTPase-activating protein (GAP) BCR during oxygen/glucose deprivation in hippocampal and cortical neurons. J Biol Chem 2017; 292:20173-20183. [PMID: 29046349 PMCID: PMC5724004 DOI: 10.1074/jbc.m117.796292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca2+-permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1–NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons.
Collapse
Affiliation(s)
- Katharine R Smith
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom; Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045.
| | - Dipen Rajgor
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
12
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|