1
|
Lin J, Ding X, Yang P, Liu S, Li Q, Cruz MA, Dong JF, Fang Y, Wu J. Force-induced biphasic regulation of VWF cleavage by ADAMTS13. Thromb Res 2023; 229:99-106. [PMID: 37421684 DOI: 10.1016/j.thromres.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
It is crucial for hemostasis that platelets are rapidly recruited to the site of vascular injury by the adhesive ligand von Willebrand factor (VWF) multimers. The metalloproteinase ADAMTS13 regulates this hemostatic activity by proteolytically reducing the size of VWF and its proteolytic kinetics has been investigated by biochemical and single-molecule biophysical methods. However, how ADAMTS13 cleaves VWF in flowing blood remains poorly defined. To investigate the force-induced VWF cleavage, VWF A1A2A3 tridomains were immobilized and subjected to hydrodynamic forces in the presence of ADAMTS13. We demonstrated that the cleavage of VWF A1A2A3 by ADAMTS13 exhibited biphasic kinetics governed by shear stress, but not shear rate. By fitting data to the single-molecule Michaelis-Menten equation, the proteolytic constant kcat of ADAMTS13 had two distinct states. The mean proteolytic constant of the fast state (kcat-fast) was 0.005 ± 0.001 s-1, which is >10-fold faster than the slow state (kcat-slow = 0.0005 ± 0.0001 s-1). Furthermore, proteolytic constants of both states were regulated by shear stress in a biphasic manner, independent of the solution viscosity, indicating that the proteolytic activity of ADAMTS13 was regulated by hydrodynamic force. The findings provide new insights into the mechanism underlying ADAMTS13 cleaving VWF under flowing blood.
Collapse
Affiliation(s)
- Jiangguo Lin
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoru Ding
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Pu Yang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Silu Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine/Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Jing-Fei Dong
- Bloodworks Research Institute and Hematology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ying Fang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| | - Jianhua Wu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Pillai VG, Zheng XL. A novel mechanism underlying allosteric regulation of ADAMTS-13 revealed by hydrogen-deuterium exchange plus mass spectrometry. Res Pract Thromb Haemost 2022; 7:100012. [PMID: 36852110 PMCID: PMC9958085 DOI: 10.1016/j.rpth.2022.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 02/15/2023] Open
Abstract
Background ADAMTS-13, a plasma metalloprotease, cleaves von Willebrand factor. ADAMTS-13 activity appears to be regulated through allosteric inhibition by its distal C-terminus. Objectives The objective of this study was to better understand how domain-domain interactions may affect ADAMTS-13 conformations and functions. Methods We performed deuterium-hydrogen exchange plus mass spectrometry to assess the number and rate of deuterium incorporation into various peptides of full-length ADAMTS-13 and its truncated variants. Results Under physiological conditions, a bimodal distribution of deuterium incorporation was detected in the peptides from metalloprotease (217-230 and 282-304), cysteine-rich (446-482), and CUB (for complement C1r/C1s, Uegf, Bmp1) domains (1185-1214, 1313-1330, 1341-1347, 1358-1378, and 1393-1407) of full-length recombinant ADAMTS-13, but not of truncated variants. These results suggest that the full-length ADAMTS-13 undergoes conformational changes. On removal of the middle and distal C-terminal domains, the number and rate of deuterium incorporation were increased in the peptides from cysteine-rich (445-467, 467-482, and 495-503) and spacer domains (621-642 and 655-654) but decreased in the peptides from metalloprotease (115-124, 217-230, and 274-281). Moreover, most peptides, except for 217-230 and 1357-1376, exhibited a pD-dependent deuterium incorporation in the full-length ADAMTS-13, but not in the truncated variant (eg, MDTCS or T5C). These results further suggest that the bimodal deuterium incorporation observed in the peptides from the full-length ADAMTS-13 is the result of potential impact from the middle to distal C-terminal domains. Surface plasmon resonance revealed the direct binding interactions between the distal and proximal domains of ADAMTS-13. Conclusion Our results provide novel insight on how intramolecular interactions may affect conformations of ADAMTS-13, thus regulating its proteolytic functions.
Collapse
Affiliation(s)
- Vikram G. Pillai
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Department of Biophysics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, USA,Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, USA,Correspondence X. Long Zheng, MD, PhD, Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, 3901 Rainbow Boulevard, 5016 Delp, Kansas City, Kansas 66160, USA.
| |
Collapse
|
3
|
Halkidis K, Zheng XL. ADAMTS13 conformations and mechanism of inhibition in immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2022; 20:2197-2203. [PMID: 35842925 PMCID: PMC9587499 DOI: 10.1111/jth.15822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 08/31/2023]
Abstract
ADAMTS13, a plasma metalloprotease that cleaves von Willebrand factor, is crucial for normal hemostasis. Acquired autoantibody-mediated deficiency of plasma ADAMTS13 results in a potentially fatal blood disorder, immune thrombotic thrombocytopenic purpura (iTTP). Plasma ADAMTS13 protease appears to exist in multiple conformations. Under physiological conditions, plasma ADAMTS13 exists predominantly in its "closed" conformation (or latent form), which may be activated by lowering pH, ligand binding, and binding of an antibody against the distal domains of ADAMTS13. In patients with iTTP, polyclonal antibodies target at various domains of ADAMTS13. However, nearly all inhibitory antibodies bind the spacer domain, whereas antibodies that bind the distal C-terminal domains may activate ADAMTS13 through removing its allosteric inhibition. Additionally, the anti-C-terminal antibodies may alter the potency of inhibitory antibodies towards ADAMTS13 activity. This review summarizes some of the most recent knowledge about the ADAMTS13 conformation and its mechanism of inhibition by its autoantibodies.
Collapse
Affiliation(s)
- Konstantine Halkidis
- Division of Hematologic Malignancies and Cellular Therapeutics, Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective. Biophys Rev 2022; 14:427-461. [PMID: 35399372 PMCID: PMC8984085 DOI: 10.1007/s12551-022-00950-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood protein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular engineering toward the development of new therapies targeting fibrin and the coagulation system.
Collapse
|
5
|
South K, Saleh O, Lemarchand E, Coutts G, Smith CJ, Schiessl I, Allan SM. Robust thrombolytic and anti-inflammatory action of a constitutively active ADAMTS13 variant in murine stroke models. Blood 2022; 139:1575-1587. [PMID: 34780600 PMCID: PMC11017955 DOI: 10.1182/blood.2021012787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022] Open
Abstract
Advances in our understanding of ADAMTS13 structure, and the conformation changes required for full activity, have rejuvenated the possibility of its use as a thrombolytic therapy. We have tested a novel Ala1144Val ADAMTS13 variant (constitutively active [ca] ADAMTS13) that exhibits constitutive activity, characterized using in vitro assays of ADAMTS13 activity, and greatly enhanced thrombolytic activity in 2 murine models of ischemic stroke, the distal FeCl3 middle cerebral artery occlusion (MCAo) model and transient middle cerebral artery occlusion (tMCAO) with systemic inflammation and ischemia/reperfusion injury. The primary measure of efficacy in both models was restoration of regional cerebral blood flow (rCBF) to the MCA territory, which was determined using laser speckle contrast imaging. The caADAMTS13 variant exhibited a constitutively active conformation and a fivefold enhanced activity against fluorescence resonance energy transfer substrate von Willebrand factor 73 (FRETS-VWF73) compared with wild-type (wt) ADAMTS13. Moreover, caADAMTS13 inhibited VWF-mediated platelet capture at subphysiological concentrations and enhanced t-PA/plasmin lysis of fibrin(ogen), neither of which were observed with wtADAMTS13. Significant restoration of rCBF and reduced lesion volume was observed in animals treated with caADAMTS13. When administered 1 hour after FeCl3 MCAo, the caADAMTS13 variant significantly reduced residual VWF and fibrin deposits in the MCA, platelet aggregate formation, and neutrophil recruitment. When administered 4 hours after reperfusion in the tMCAo model, the caADAMTS13 variant induced a significant dissolution of platelet aggregates and a reduction in the resulting tissue hypoperfusion. The caADAMTS13 variant represents a potentially viable therapeutic option for the treatment of acute ischemic stroke, among other thrombotic indications, due to its enhanced in vitro and in vivo activities that result from its constitutively active conformation.
Collapse
Affiliation(s)
- Kieron South
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
| | - Ohud Saleh
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Biochemistry, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Eloise Lemarchand
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
| | - Graham Coutts
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Ingo Schiessl
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance National Health Service (NHS) Group–University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Residues R1075, D1090, R1095, and C1130 Are Critical in ADAMTS13 TSP8-Spacer Interaction Predicted by Molecular Dynamics Simulation. Molecules 2021; 26:molecules26247525. [PMID: 34946607 PMCID: PMC8703438 DOI: 10.3390/molecules26247525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
ADAMTS13 (A Disintegrin and Metalloprotease with Thrombospondin type 1 repeats, member 13) cleaves von Willebrand Factor (VWF) multimers to limit the prothrombotic function of VWF. The deficiency of ADAMTS13 causes a lethal thrombotic microvascular disease, thrombotic thrombocytopenic purpura (TTP). ADAMTS13 circulates in a “closed” conformation with the distal domain associating the Spacer domain to avoid off-target proteolysis or recognition by auto-antibodies. However, the interactions of the distal TSP8 domain and the Spacer domain remain elusive. Here, we constructed the TSP8-Spacer complex by a combination of homology modelling and flexible docking. Molecular dynamics simulation was applied to map the binding sites on the TSP8 or Spacer domain. The results predicted that R1075, D1090, R1095, and C1130 on the TSP8 domain were key residues that interacted with the Spacer domain. R1075 and R1095 bound exosite-4 tightly, D1090 formed multiple hydrogen bonds and salt bridges with exosite-3, and C1130 interacted with both exosite-3 and exosite-4. Specific mutations of exosite-3 (R568K/F592Y/R660K/Y661F/Y665F) or the four key residues (R1075A/D1090A/R1095A/C1130A) impaired the binding of the TSP8 domain to the Spacer domain. These results shed new light on the understanding of the auto-inhibition of ADAMTS13.
Collapse
|
7
|
Yang J, Wu Z, Xie X, Liu G, Fang Y, Wu J, Lin J. Characterization of the interactions of ADAMTS13 CUB1 domain to WT- and GOF-Spacer domain by molecular dynamics simulation. J Mol Graph Model 2021; 109:108029. [PMID: 34517169 DOI: 10.1016/j.jmgm.2021.108029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/22/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Metalloprotease ADAMTS13 specifically cleaves VWF (von Willebrand Factor) to prevent excessive platelet aggregation and thrombus formation at the sites of vascular injury. To avoid non-specific cleavage, ADAMTS13 has the auto-inhibition effect in which the Spacer domain in N-terminal interacts with the CUB1 domain in C-terminal, resulting in decreased proteolytic activity. Previous studies reported that exosite-3 in the Spacer domain was a key binding site in the Spacer-CUB1 interaction. When exosite-3 was mutated (R660K/F592Y/R568K/Y661F/Y665F, GOF), the auto-inhibition of ADAMTS13 was disrupted and the enzymatic activity was markedly increased. However, the characteristics of the Spacer-CUB1 interaction is not fully understood. Here, we constructed the model of Spacer-CUB1 complex by homologous modeling and molecular docking to characterize the Spacer-CUB1 binding and predict key amino acid residues via molecular dynamics simulation. Our data showed that G607-S610 was a non-reported potential binding site in the Spacer domain; GOF mutation attenuated the formation of hydrogen bond between exosite-3 and the CUB1 domain; Residues E1231, R1251, L1258, D1259 and T1261 in the CUB1 domain might play an important role in the Spacer-CUB1 interaction. Our study advances the understanding of the structural basis of the auto-inhibition of ADAMTS13 and provides information about the key residues in the binding interface.
Collapse
Affiliation(s)
- Junxian Yang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiwei Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xubin Xie
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Guangjian Liu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ying Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Ercig B, Arfman T, Hrdinova J, Wichapong K, Reutelingsperger CPM, Vanhoorelbeke K, Nicolaes GAF, Voorberg J. Conformational plasticity of ADAMTS13 in hemostasis and autoimmunity. J Biol Chem 2021; 297:101132. [PMID: 34461090 PMCID: PMC8449270 DOI: 10.1016/j.jbc.2021.101132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) is a multidomain metalloprotease for which until now only a single substrate has been identified. ADAMTS13 cleaves the polymeric force-sensor von Willebrand factor (VWF) that unfolds under shear stress and recruits platelets to sites of vascular injury. Shear force–dependent cleavage at a single Tyr–Met peptide bond in the unfolded VWF A2 domain serves to reduce the size of VWF polymers in circulation. In patients with immune-mediated thrombotic thrombocytopenic purpura (iTTP), a rare life-threatening disease, ADAMTS13 is targeted by autoantibodies that inhibit its activity or promote its clearance. In the absence of ADAMTS13, VWF polymers are not adequately processed, resulting in spontaneous adhesion of blood platelets, which presents as severe, life-threatening microvascular thrombosis. In healthy individuals, ADAMTS13–VWF interactions are guided by controlled conversion of ADAMTS13 from a closed, inactive to an open, active conformation through a series of interdomain contacts that are now beginning to be defined. Recently, it has been shown that ADAMTS13 adopts an open conformation in the acute phase and during subclinical disease in iTTP patients, making open ADAMTS13 a novel biomarker for iTTP. In this review, we summarize our current knowledge on ADAMTS13 conformation and speculate on potential triggers inducing conformational changes of ADAMTS13 and how these relate to the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Bogac Ercig
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Tom Arfman
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Johana Hrdinova
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands; Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function. Blood Adv 2021; 4:1072-1080. [PMID: 32196558 DOI: 10.1182/bloodadvances.2019001375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Plasma ADAMTS13 circulates in a folded conformation that is stabilized by an interaction between the central Spacer domain and the C-terminal CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. Binding of ADAMTS13 to the VWF D4(-CK) domains or to certain activating murine monoclonal antibodies (mAbs) induces a structural change that extends ADAMTS13 into an open conformation that enhances its function. The objective was to characterize the mechanism by which conformational activation enhances ADAMTS13-mediated proteolysis of VWF. The activating effects of a novel anti-Spacer (3E4) and the anti-CUB1 (17G2) mAbs on the kinetics of proteolysis of VWF A2 domain fragments by ADAMTS13 were analyzed. mAb-induced conformational changes in ADAMTS13 were investigated by enzyme-linked immunosorbent assay. Both mAbs enhanced ADAMTS13 catalytic efficiency (kcat/Km) by ∼twofold (3E4: 2.0-fold; 17G2: 1.8-fold). Contrary to previous hypotheses, ADAMTS13 activation was not mediated through exposure of the Spacer or cysteine-rich domain exosites. Kinetic analyses revealed that mAb-induced conformational extension of ADAMTS13 enhances the proteolytic function of the metalloprotease domain (kcat), rather than augmenting substrate binding (Km). A conformational effect on the metalloprotease domain was further corroborated by the finding that incubation of ADAMTS13 with either mAb exposed a cryptic epitope in the metalloprotease domain that is normally concealed when ADAMTS13 is in a closed conformation. We show for the first time that the primary mechanism of mAb-induced conformational activation of ADAMTS13 is not a consequence of functional exosite exposure. Rather, our data are consistent with an allosteric activation mechanism on the metalloprotease domain that augments active site function.
Collapse
|
10
|
Kim HJ, Xu Y, Petri A, Vanhoorelbeke K, Crawley JTB, Emsley J. Crystal structure of ADAMTS13 CUB domains reveals their role in global latency. SCIENCE ADVANCES 2021; 7:7/16/eabg4403. [PMID: 33863735 PMCID: PMC8051872 DOI: 10.1126/sciadv.abg4403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
ADAMTS13 is a plasma metalloprotease that is essential for the regulation of von Willebrand factor (VWF) function, mediator of platelet recruitment to sites of blood vessel damage. ADAMTS13 function is dynamically regulated by structural changes induced by VWF binding that convert it from a latent to active conformation. ADAMTS13 global latency is manifest by the interaction of its C-terminal CUB1-2 domains with its central Spacer domain. We resolved the crystal structure of the ADAMTS13 CUB1-2 domains revealing a previously unreported configuration for the tandem CUB domains. Docking simulations between the CUB1-2 domains with the Spacer domain in combination with enzyme kinetic functional characterization of ADAMTS13 CUB domain mutants enabled the mapping of the CUB1-2 domain site that binds the Spacer domain. Together, these data reveal the molecular basis of the ADAMTS13 Spacer-CUB interaction and the control of ADAMTS13 global latency.
Collapse
Affiliation(s)
- H J Kim
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Y Xu
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - A Petri
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - J T B Crawley
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - J Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Grigoreva KN, Bitsadze VO, Khizroeva JK, Tretyakova MV, Ponomarev DA, Tsvetnova KY, Doronicheva DA, Mamaeva AR, Mekhedova KV, Rizzo G, Gris JC, Elalamy I, Makatsariya AD. Clinical significance of measuring ADAMTS-13, its inhibitor and von Willebrand factor in obstetric and gynecological practice. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021; 15:93-106. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ADAMTS-13 is a crucial metalloproteinase involved in liberating fragments of von Willebrand factor (vWF) into the plasma as well as regulating its activity by cleaving "ultra-large" multimers into smaller and less active counterparts. Many pathological conditions, including those emerged during pregnancy are characterized by increased level of vWF and decreased ADAMTS-13 activity. In this regard, it is necessary to monitor the levels of vWF and ADAMTS-13 activity to prevent thrombotic thrombocytopenic purpura (Moschcowitz disease) as one of the most severe forms of thrombotic microangiopathy.
Collapse
Affiliation(s)
| | | | | | | | - D. A. Ponomarev
- Maternity Hospital № 4, Branch of Vinogradov City Clinical Hospital, Moscow Healthcare Department
| | - K. Yu. Tsvetnova
- Maternity Hospital № 4, Branch of Vinogradov City Clinical Hospital, Moscow Healthcare Department
| | | | | | | | - G. Rizzo
- Sechenov University; Tor Vergata University of Rome
| | - J.-C. Gris
- Sechenov University; University of Montpellier
| | - I. Elalamy
- Sechenov University; Medicine Sorbonne University; 2 Hospital Tenon
| | | |
Collapse
|
12
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Insights into ADAMTS13 structure: impact on thrombotic thrombocytopenic purpura diagnosis and management. Curr Opin Hematol 2020; 27:320-326. [DOI: 10.1097/moh.0000000000000602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
In silico features of ADAMTS13 contributing to plasmatic ADAMTS13 levels in neonates with congenital heart disease. Thromb Res 2020; 193:66-76. [PMID: 32531546 DOI: 10.1016/j.thromres.2020.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Risk factors contributing to heightened thrombosis in pediatric congenital heart disease (CHD) patients are not fully understood. Among the neonatal CHD population, those presenting with single ventricular physiology are at the highest risk for perioperative thrombosis. The von Willebrand factor and ADAMTS13 interactions have emerged as causative risk factors for pediatric stroke and could contribute to heightened thrombosis in CHD neonates. METHODS This study investigates a cohort of children with single ventricle physiology and undergoing cardiac surgery, during which some patients developed thrombosis. In this cohort, we analyzed the relationship of several molecular features of ADAMTS13 with the plasma and activity levels in patients at risk of thrombosis. Additionally, in light of the natural antithrombotic activity of ADAMTS13, we have sequenced the ADAMTS13 gene for each patient and evaluated the role of genetic variants in determining the plasma ADAMTS13 levels using a series of in silico tools including Hidden Markov Models, EVmutation, and Rosetta. RESULTS Lower ADAMTS13 levels were found in patients that developed thrombosis. A novel in silico analysis to assess haplotype effect of co-occurring variants identified alterations in relative surface area and solvation energy as important contributors. Our analysis suggested that beneficial or deleterious effect of a variant can be reasonably predicted by comprehensive analysis of in silico assessment and in vitro and/or in vivo data. CONCLUSION Findings from this study add to our understanding the role of genetic features of ADAMTS13 in patients at high risk of thrombosis related to an imbalanced relation between VWF and ADAMTS13.
Collapse
|
15
|
Rottensteiner H, Seyfried BK, Kaufmann S, Fiedler C, Dong J, Zheng XL, Plaimauer B, Scheiflinger F. Identification of cysteine thiol-based linkages in ADAMTS13 in support of a non-proteolytic regulation of von Willebrand factor. J Thromb Haemost 2019; 17:2099-2109. [PMID: 31393047 PMCID: PMC6916347 DOI: 10.1111/jth.14602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND ADAMTS13, a plasma metalloprotease, cleaves von Willebrand factor (VWF) to regulate its function. Additionally, ADAMTS13 is thought to regulate lateral association of VWF multimers to form fibrillar structures through its free thiols. OBJECTIVE The purpose of the present study is to obtain direct evidence for ADAMTS13 to engage in thiol/disulfide exchange reactions. METHODS Covalent complexes between ADAMTS13 and VWF were determined by agarose gel electrophoresis under nonreducing conditions. Free thiols in ADAMST13 were identified by a reversed phase high-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry system. RESULTS We demonstrate formation of covalent linkage between ADAMTS13 and VWF, which is time, concentration, temperature, and shear dependent. This interaction is independent of proteolytic activity of ADAMTS13 but depends on the C-terminal domains comprising the fifth through eighth thrombospondin type 1 repeats and C1r/C1s, Uegf, Bmp1 (CUB) domains. The interaction can be blocked by thiol-reactive agents, indicating that association is accomplished through disulfide bridge formation. Several partially reduced free thiols are identified in ADAMTS13, with cysteines 1254 and 1275 being the most prominent, although a point mutation (C1275S) in ADAMTS13 does not alter its ability to form covalent linkages with VWF. This suggests functionally relevant disulfide plasticity in ADAMTS13. Interestingly, ADAMTS13 also forms homo-oligomers under the same conditions as required for the generation of hetero-oligomeric complexes of ADAMTS13 and VWF. CONCLUSIONS Our results suggest that a dynamic network of free thiols in ADAMTS13 undergoing intra- and inter-molecular redox reactions may add another layer of regulation to VWF function under various conditions.
Collapse
Affiliation(s)
| | - Birgit K. Seyfried
- Baxalta Innovations GmbH, a member of the Takeda group of companiesViennaAustria
| | - Stefan Kaufmann
- Baxalta Innovations GmbH, a member of the Takeda group of companiesViennaAustria
| | - Christian Fiedler
- Baxalta Innovations GmbH, a member of the Takeda group of companiesViennaAustria
| | - Jing‐Fei Dong
- BloodWorks Northwest Research InstituteUniversity of WashingtonSeattleWAUSA
| | - X. Long Zheng
- Division of Laboratory MedicineDepartment of PathologyThe University of Alabama at BirminghamBirminghamALUSA
| | - Barbara Plaimauer
- Baxalta Innovations GmbH, a member of the Takeda group of companiesViennaAustria
| | | |
Collapse
|
16
|
Li Z, Lin J, Sulchek T, Cruz MA, Wu J, Dong JF, Zhu C. Domain-specific mechanical modulation of VWF-ADAMTS13 interaction. Mol Biol Cell 2019; 30:1920-1929. [PMID: 31067148 PMCID: PMC6727775 DOI: 10.1091/mbc.e19-01-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hemodynamic forces activate the Von Willebrand factor (VWF) and facilitate its cleavage by a disintegrin and metalloprotease with thrombospondin motifs-13 (ADAMTS13), reducing the adhesive activity of VWF. Biochemical assays have mapped the binding sites on both molecules. However, these assays require incubation of two molecules for a period beyond the time allowed in flowing blood. We used a single-molecule technique to examine these rapid, transient, and mechanically modulated molecular interactions in short times under forces to mimic what happens in circulation. Wild-type ADAMTS13 and two truncation variants that either lacked the C-terminal thrombospondin motif-7 to the CUB domain (MP-TSP6) or contained only the two CUB domains (CUB) were characterized for interactions with coiled VWF, flow-elongated VWF, and a VWF A1A2A3 tridomain. These interactions exhibited distinctive patterns of calcium dependency, binding affinity, and force-regulated lifetime. The results suggest that 1) ADAMTS13 binds coiled VWF primarily through CUB in a calcium-dependent manner via a site(s) outside A1A2A3, 2) ADAMTS13 binds flow-extended VWF predominantly through MP-TSP6 via a site(s) different from the one(s) at A1A2A3; and 3) ADAMTS13 binds A1A2A3 through MP-TSP6 in a Ca2+-dependent manner to autoinhibit another Ca2+-independent binding site on CUB. These data reveal that multiple sites on both molecules are involved in mechanically modulated VWF–ADAMTS13 interaction.
Collapse
Affiliation(s)
- Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, People's Republic of China
| | - Jiangguo Lin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Institute of Biomechanics and School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Todd Sulchek
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jianhua Wu
- Institute of Biomechanics and School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jing-Fei Dong
- BloodWorks Northwest Research Institute, Seattle, WA 98102
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
17
|
Zhu J, Muia J, Gupta G, Westfield LA, Vanhoorelbeke K, Tolia NH, Sadler JE. Exploring the "minimal" structure of a functional ADAMTS13 by mutagenesis and small-angle X-ray scattering. Blood 2019; 133:1909-1918. [PMID: 30692120 PMCID: PMC6484386 DOI: 10.1182/blood-2018-11-886309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
Human ADAMTS13 is a multidomain protein with metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains, followed by 7 additional T domains and 2 CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. ADAMTS13 inhibits the growth of von Willebrand factor (VWF)-platelet aggregates by cleaving the cryptic Tyr1605-Met1606 bond in the VWF A2 domain. ADAMTS13 is regulated by substrate-induced allosteric activation; without shear stress, the distal T8-CUB domains markedly inhibit VWF cleavage, and binding of VWF domain D4 or selected monoclonal antibodies (MAbs) to distal ADAMTS13 domains relieves this autoinhibition. By small angle X-ray scattering (SAXS), ADAMTS13 adopts a hairpin-like conformation with distal T7-CUB domains close to the proximal MDTCS domains and a hinge point between T4 and T5. The hairpin projects like a handle away from the core MDTCS and T7-CUB complex and contains distal T domains that are dispensable for allosteric regulation. Truncated constructs that lack the T8-CUB domains are not autoinhibited and cannot be activated by VWF D4 but retain the hairpin fold. Allosteric activation by VWF D4 requires T7, T8, and the 58-amino acid residue linker between T8 and CUB1. Deletion of T3 to T6 produced the smallest construct (delT3-6) examined that could be activated by MAbs and VWF D4. Columba livia (pigeon) ADAMTS13 (pADAMTS13) resembles human delT3-6, retains normal activation by VWF D4, and has a SAXS envelope consistent with amputation of the hairpin containing the dispensable T domains of human ADAMTS13. Our findings suggest that human delT3-6 and pADAMTS13 approach a "minimal" structure for allosterically regulated ADAMTS13.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Joshua Muia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Garima Gupta
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lisa A Westfield
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility Life Sciences, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Niraj H Tolia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD; and
| | - J Evan Sadler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Chung DW. Hairpin and allosteric regulation in ADAMTS13. Blood 2019; 133:1800-1801. [PMID: 31023744 PMCID: PMC6484384 DOI: 10.1182/blood-2019-02-900563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Newnham M, South K, Bleda M, Auger WR, Barberà JA, Bogaard H, Bunclark K, Cannon JE, Delcroix M, Hadinnapola C, Howard LS, Jenkins D, Mayer E, Ng C, Rhodes CJ, Screaton N, Sheares K, Simpson MA, Southwood M, Su L, Taboada D, Traylor M, Trembath RC, Villar SS, Wilkins MR, Wharton J, Gräf S, Pepke-Zaba J, Laffan M, Lane DA, Morrell NW, Toshner M. The ADAMTS13-VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. Eur Respir J 2019; 53:13993003.01805-2018. [PMID: 30655285 PMCID: PMC6437602 DOI: 10.1183/13993003.01805-2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13–von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants. ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13–VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size. Patients with CTEPH had decreased ADAMTS13 (adjusted β −23.4%, 95% CI −30.9– −15.1%, p<0.001) and increased VWF levels (β +75.5%, 95% CI 44.8–113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels. The ADAMTS13–VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13–VWF axis in CTEPH pathobiology. The ADAMTS-13–VWF axis is dysregulated in chronic thromboembolism with and without pulmonary hypertension and is implicated in the pathogenesishttp://ow.ly/J9SC30nh5T0
Collapse
Affiliation(s)
- Michael Newnham
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Royal Papworth Hospital, Cambridge, UK
| | - Kieron South
- Centre for Haematology, Imperial College London, London, UK
| | - Marta Bleda
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | - Joan A Barberà
- Hospital Clínic - IDIBAPS-CIBER Enfermedades Respiratorias, University of Barcelona, Barcelona, Spain
| | - Harm Bogaard
- VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | - Charaka Hadinnapola
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Luke S Howard
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | | - Eckhard Mayer
- Kerckhoff Heart and Lung Centre, Bad Nauheim, Germany
| | - Choo Ng
- Royal Papworth Hospital, Cambridge, UK
| | - Christopher J Rhodes
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | | | | | - Michael A Simpson
- Dept of Medical and Molecular Genetics, King's College London School of Basic and Medical Biosciences, London, UK
| | | | - Li Su
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Matthew Traylor
- Dept of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard C Trembath
- Dept of Medical and Molecular Genetics, King's College London School of Basic and Medical Biosciences, London, UK
| | - Sofia S Villar
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Wilkins
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - John Wharton
- Centre for Pharmacology and Therapeutics, Dept of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Stefan Gräf
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Dept of Haematology, National Health Service Blood and Transplant Centre, University of Cambridge, Cambridge, UK.,National Institute of Health Research BioResource for Translational Research, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Michael Laffan
- Centre for Haematology, Imperial College London, London, UK
| | - David A Lane
- Centre for Haematology, Imperial College London, London, UK
| | - Nicholas W Morrell
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mark Toshner
- Dept of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
20
|
Phylogenetic and functional analysis of ADAMTS13 identifies highly conserved domains essential for allosteric regulation. Blood 2019; 133:1899-1908. [PMID: 30700419 DOI: 10.1182/blood-2018-11-886275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
The metalloprotease ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats member 13) prevents microvascular thrombosis by cleaving von Willebrand factor (VWF) within platelet-rich thrombi, and cleavage depends on allosteric activation of ADAMTS13 by the substrate VWF. Human ADAMTS13 has a short propeptide, metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C), and spacer (S) domains (proximal domains), followed by 7 T and 2 CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains (distal domains). Distal domains inhibit the catalytic proximal domains; binding of distal T8-CUB domains to the VWF D4 domain relieves autoinhibition and promotes cleavage of the nearby VWF A2 domain. However, the role of specific ADAMTS13 distal domains in this allosteric mechanism is not established. Assays of plasma ADAMTS13 from 20 placental mammals, birds, and amphibians show that allosteric regulation is broadly conserved, and phylogenetic analysis of 264 vertebrates shows the long propeptide, T3, T4, T6, and T6a domains have been deleted several times in placental mammals, birds, and fish. Notably, pigeon ADAMTS13 has only 3 distal T domains but was activated normally by human VWF D4 and cleaved VWF multimers, preferentially under fluid shear stress. Human ADAMTS13 constructed to resemble pigeon ADAMTS13 retained normal allosteric regulation and shear-dependent cleavage of VWF. Thus, the T3-T6 domains of human ADAMTS13 are dispensable. Conversely, deletion of T7 or T8 abolished allosteric activation. For most species, some sequence changes in the VWF substrate can markedly increase the rate of cleavage, suggesting that ADAMTS13 and VWF have not evolved to be optimal enzyme-substrate pairs. These properties may reflect evolutionary pressure to balance the risk for VWF-dependent bleeding and thrombosis.
Collapse
|
21
|
Yu S, Liu W, Fang J, Shi X, Wu J, Fang Y, Lin J. AFM Imaging Reveals Multiple Conformational States of ADAMTS13. J Biol Eng 2019; 13:9. [PMID: 30679946 PMCID: PMC6343300 DOI: 10.1186/s13036-018-0102-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background ADAMTS13 (A disintegrin and metalloprotease with a thrombospondin type 1 motif 13) cleaves Von Willebrand factor (VWF) to regulate its size, thereby preventing aberrant platelet aggregation and thrombus. Deficiency of ADAMTS13 caused by either genetic mutations or by inhibitory autoantibodies against ADAMTS13 leads to thrombotic thrombocytopenic purpura (TTP). Recently, ADAMTS13 was reported to adopt a “closed” conformation with lower activity and an “open” one resulting from the engagements of VWF D4-CK domains or antibodies to the distal domains of ADAMTS13, or mutations in its spacer domain. These engagements or mutations increase ADAMTS13 activity by ~ 2.5-fold. However, it is less known whether the conformation of ADAMTS13 is dynamic or stable. Results Wild type ADAMTS13 (WT-ADAMTS13) and the gain-of-function variant (GOF-ADAMTS13) with five mutations (R568K / F592Y / R660K / Y661F / Y665F) in spacer domain were imaged by atomic force microscopy (AFM) at pH 6 and pH 7.5. The data revealed that at both pH 6 and pH 7.5, WT-ADAMTS13 adopted two distinct conformational states (state I and state II), while an additional state (state III) was observed in GOF-ADAMTS13. In the present study, we propose that state I is the “closed” conformation, state III is the “open” one, and state II is an intermediate one. Comparing to pH 7.5, the percentages of state II of WT-ADAMTS13 and state III of GOF-ADAMTS13 increased at pH 6, with the decrease in the state I for WT-ADAMTS13 and state I and state II for GOF-ADAMTS13, suggesting lower pH extended the conformation of ADAMTS13. Conclusion Both WT- and GOF-ADAMTS13 exist multiple conformational states and lower pH might alter the tertiary structure and/or disrupt the intra-domain interactions, increasing the flexibility of ADAMTS13 molecules. Electronic supplementary material The online version of this article (10.1186/s13036-018-0102-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Yu
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Wang Liu
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Jinhua Fang
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaozhong Shi
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Ying Fang
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Jiangguo Lin
- Institute of Biomechanics, School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006 China
| |
Collapse
|
22
|
South K, Denorme F, Salles‐Crawley II, De Meyer SF, Lane DA. Enhanced activity of an ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) against platelet agglutination in vitro and in a murine model of acute ischemic stroke. J Thromb Haemost 2018; 16:2289-2299. [PMID: 30152919 PMCID: PMC6282751 DOI: 10.1111/jth.14275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Abstract
Essentials ADAMTS13 requires a substrate-induced conformational change to attain full activity in vitro. The efficacy of wild type ADAMTS13 in models of thrombosis/stroke may be enhanced by pre-activation. A pre-activated ADAMTS13 variant exhibits enhanced proteolysis of platelet agglutinates. This ADAMTS13 variant is protective in a murine model of stroke at a lower dose than WT ADAMTS13. SUMMARY: Background ADAMTS-13 circulates in a closed conformation, only achieving full proteolytic activity against von Willebrand factor (VWF) following a substrate-induced conformational change. A gain-of-function (GoF) ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F) is conformationally preactivated. Objectives To establish how the hyperactivity of GoF ADAMTS-13 is manifested in experimental models mimicking the occlusive arterial thrombi present in acute ischemic stroke. Methods The ability of GoF ADAMTS-13 to dissolve VWF-platelet agglutinates was examined with an assay of ristocetin-induced platelet agglutination and in parallel-flow models of arterial thrombosis. A murine model of focal ischemia was used to assess the thrombolytic potential of GoF ADAMTS-13. Results Wild-type (WT) ADAMTS-13 required conformational activation to attain full activity against VWF-mediated platelet capture under flow. In this assay, GoF ADAMTS-13 had an EC50 value more than five-fold lower than that of WT ADAMTS-13 (0.73 ± 0.21 nm and 3.81 ± 0.97 nm, respectively). The proteolytic activity of GoF ADAMTS-13 against preformed platelet agglutinates under flow was enhanced more than four-fold as compared with WT ADAMTS-13 (EC50 values of 2.5 ± 1.1 nm and 10.2 ± 5.6 nm, respectively). In a murine stroke model, GoF ADAMTS-13 restored cerebral blood flow at a lower dose than WT ADAMTS-13, and partially retained the ability to recanalize vessels when administration was delayed by 1 h. Conclusions The limited proteolytic activity of WT ADAMTS-13 in in vitro models of arterial thrombosis suggests an in vivo requirement for conformational activation. The enhanced activity of the GoF ADAMTS-13 variant translates to a more pronounced protective effect in experimental stroke.
Collapse
Affiliation(s)
- K. South
- Centre for HaematologyImperial College LondonLondonUK
- Present address:
Division of NeuroscienceUniversity of ManchesterManchesterUK
| | - F. Denorme
- Laboratory for Thrombosis ResearchKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | | | - S. F. De Meyer
- Laboratory for Thrombosis ResearchKU Leuven Campus Kulak KortrijkKortrijkBelgium
| | - D. A. Lane
- Centre for HaematologyImperial College LondonLondonUK
| |
Collapse
|
23
|
Plautz WE, Raval JS, Dyer MR, Rollins-Raval MA, Zuckerbraun BS, Neal MD. ADAMTS13: origins, applications, and prospects. Transfusion 2018; 58:2453-2462. [PMID: 30208220 DOI: 10.1111/trf.14804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
ADAMTS13 is an enzyme that acts by cleaving prothrombotic von Willebrand factor (VWF) multimers from the vasculature in a highly regulated manner. In pathologic states such as thrombotic thrombocytopenic purpura (TTP) and other thrombotic microangiopathies (TMAs), VWF can bind to the endothelium and form large multimers. As the anchored VWF chains grow, they provide a greater surface area to bind circulating platelets (PLTs), generating unique thrombi that characterize TTP. This results in microvasculature thrombosis, obstruction of blood flow, and ultimately end-organ damage. Initial presentations of TTP usually occur in an acute manner, typically developing due to an autoimmune response toward, or less commonly a congenital deficiency of, ADAMTS13. Triggers for TMAs that can be associated with ADAMTS13 deficiency, including TTP, have been linked to events that place a burden on hemostatic regulation, such as major trauma and pregnancy. The treatment plan for cases of suspected TTP consists of emergent therapeutic plasma exchange that is continued on a daily basis until normalization of PLT counts. However, a subset of these patients does not respond favorably to standard therapies. These patients necessitate a better understanding of their diseases for the advancement of future therapeutic options. Given ADAMTS13's key role in the cleavage of VWF and the prevention of PLT-rich thrombi within the microvasculature, future treatments may include anti-VWF therapeutics, recombinant ADAMTS13 infusions, and ADAMTS13 expression via gene therapy.
Collapse
Affiliation(s)
- William E Plautz
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jay S Raval
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mitchell R Dyer
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marian A Rollins-Raval
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Matthew D Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Hrdinová J, D'Angelo S, Graça NAG, Ercig B, Vanhoorelbeke K, Veyradier A, Voorberg J, Coppo P. Dissecting the pathophysiology of immune thrombotic thrombocytopenic purpura: interplay between genes and environmental triggers. Haematologica 2018; 103:1099-1109. [PMID: 29674502 PMCID: PMC6029525 DOI: 10.3324/haematol.2016.151407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
Abstract
Although outstanding progress has been made in understanding the pathophysiology of thrombotic thrombocytopenic purpura (TTP), knowledge of the immunopathogenesis of the disease is only at an early stage. Anti-ADAMTS13 auto-antibodies were shown to block proteolysis of von Willebrand factor and/or induce ADAMTS13 clearance from the circulation. However, it still remains to identify which immune cells are involved in the production of anti-ADAMTS13 autoantibodies, and therefore account for the remarkable efficacy of the B-cell depleting agents in this disease. The mechanisms leading to the loss of tolerance of the immune system towards ADAMTS13 involve the predisposing genetic factors of the human leukocyte antigen class II locus DRB1*11 and DQB1*03 alleles as well as the protective allele DRB1*04, and modifying factors such as ethnicity, sex and obesity. Future studies have to identify why these identified genetic risk factors are also frequently to be found in the healthy population although the incidence of immune-mediated thrombotic thrombocytopenic purpura (iTTP) is extremely low. Moreover, the development of recombinant ADAMTS13 opens a new therapeutic era in the field. Interactions of recombinant ADAMTS13 with the immune system of iTTP patients will require intensive investigation, especially for its potential immunogenicity. Better understanding of iTTP immunopathogenesis should, therefore, provide a basis for the development of novel therapeutic approaches to restore immune tolerance towards ADAMTS13 and thereby better prevent refractoriness and relapses in patients with iTTP. In this review, we address these issues and the related challenges in this field.
Collapse
Affiliation(s)
- Johana Hrdinová
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands.,PharmaTarget B.V., Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Silvia D'Angelo
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium.,Protobios LLC, Tallinn, Estonia
| | - Nuno A G Graça
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands.,Icosagen Cell Factory OÜ, Ülenurme Vald, Tartumaa, Estonia
| | - Bogac Ercig
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands.,PharmaTarget B.V., Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | - Agnès Veyradier
- Service d'Hématologie Biologique and EA3518, Groupe Hospitalier Saint Louis-Lariboisière, Assistance Publique - Hôpitaux de Paris, Université Paris Diderot, France.,Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, Hôpital Saint-Antoine, AP-HP, Paris, France .,Service d'Hématologie, Assistance Publique - Hôpitaux de Paris, France.,Sorbonne Université, UPMC Univ Paris 06, France
| |
Collapse
|
25
|
Abstract
von Willebrand factor (VWF) is a key player in hemostasis, acting as a carrier for factor VIII and capturing platelets at sites of vascular damage. To capture platelets, it must undergo conformational changes, both within its A1 domain and at the macromolecular level through A2 domain unfolding. Its size and this function are regulated by the metalloproteinase ADAMTS-13. Recently, it has been shown that ADAMTS-13 undergoes a conformational change upon interaction with VWF, and that this enhances its activity towards its substrate. This review summarizes recent work on these conformational transitions, describing how they are controlled. It points to their importance in hemostasis, bleeding disorders, and the developing field of therapeutic application of ADAMTS-13 as an antithrombotic agent in obstructive microvascular thrombosis and in cardiovascular disease.
Collapse
Affiliation(s)
- K. South
- Centre for HaematologyImperial College LondonLondonUK
| | - D. A. Lane
- Centre for HaematologyImperial College LondonLondonUK
| |
Collapse
|
26
|
Garland KS, Reitsma SE, Shirai T, Zilberman-Rudenko J, Tucker EI, Gailani D, Gruber A, McCarty OJT, Puy C. Removal of the C-Terminal Domains of ADAMTS13 by Activated Coagulation Factor XI induces Platelet Adhesion on Endothelial Cells under Flow Conditions. Front Med (Lausanne) 2017; 4:232. [PMID: 29326937 PMCID: PMC5742325 DOI: 10.3389/fmed.2017.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Platelet recruitment to sites of vascular injury is mediated by von Willebrand factor (VWF). The shear-induced unraveling of ultra-large VWF multimers causes the formation of a “stringlike” conformation, which rapidly recruits platelets from the bloodstream. A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) regulates this process by cleaving VWF to prevent aberrant platelet adhesion; it is unclear whether the activity of ADAMTS13 itself is regulated. The serine proteases α-thrombin and plasmin have been shown to cleave ADAMTS13. Based on sequence homology, we hypothesized that activated coagulation factor XI (FXIa) would likewise cleave ADAMTS13. Our results show that FXIa cleaves ADAMTS13 at the C-terminal domains, generating a truncated ADAMTS13 with a deletion of part of the thrombospondin type-1 domain and the CUB1-2 domains, while α-thrombin cleaves ADAMTS13 near the CUB1-2 domains and plasmin cleaves ADAMTS13 at the metalloprotease domain and at the C-terminal domain. Using a cell surface immunoassay, we observed that FXIa induced the deletion of the CUB1-2 domains from ADAMTS13 on the surface of endothelial cells. Removal of the C-terminal domain of ADAMTS13 by FXIa or α-thrombin caused an increase in ADAMTS13 activity as measured by a fluorogenic substrate (FRETS) and blocked the ability of ADAMTS13 to cleave VWF on the endothelial cell surface, resulting in persistence of VWF strands and causing an increase in platelet adhesion under flow conditions. We have demonstrated a novel mechanism for coagulation proteinases including FXIa in regulating ADAMTS13 activity and function. This may represent an additional hemostatic function by which FXIa promotes local platelet deposition at sites of vessel injury.
Collapse
Affiliation(s)
- Kathleen S Garland
- Division of Pediatric Hematology/Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toshiaki Shirai
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jevgenia Zilberman-Rudenko
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Erik I Tucker
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Aronora, Inc., Portland, OR, United States
| | - David Gailani
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - András Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Aronora, Inc., Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|