1
|
Wade EM, Goodin EA, Wang Y, Morgan T, Callon KE, Watson M, Daniel PB, Cornish J, McCulloch CA, Robertson SP. FLNA-filaminopathy skeletal phenotypes are not due to an osteoblast autonomous loss-of-function. Bone Rep 2023; 18:101668. [PMID: 36909664 PMCID: PMC9995945 DOI: 10.1016/j.bonr.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mutations in FLNA, which encodes the cytoskeletal protein FLNA, cause a spectrum of sclerosing skeletal dysplasias. Although many of these genetic variants are recurrent and cluster within the gene, the pathogenic mechanism that underpins the development of these skeletal phenotypes is unknown. To determine if the skeletal dysplasia in FLNA-related conditions is due to a cell-autonomous loss-of-function localising to osteoblasts and/or osteocytes, we utilised mouse models to conditionally remove Flna from this cellular lineage. Flna was conditionally knocked out from mature osteocytes using the Dmp1-promoter driven Cre-recombinase expressing mouse, as well as the committed osteoblast lineage using the Osx-Cre or Col1a1-Cre expressing lines. We measured skeletal parameters with μCT and histological methods, as well as gene expression in the mineralised skeleton. We found no measureable differences between the conditional Flna knockout mice, and their control littermate counterparts. Moreover, all of the conditional Flna knockout mice, developed and aged normally. From this we concluded that the skeletal dysplasia phenotype associated with pathogenic variants in FLNA is not caused by a cell-autonomous loss-of-function in the osteoblast-osteocyte lineage, adding more evidence to the hypothesis that these phenotypes are due to gain-of-function in FLNA.
Collapse
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A. Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Karen E. Callon
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Maureen Watson
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Philip B. Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | | | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Corresponding author.
| |
Collapse
|
3
|
Iqbal NS, Jascur TA, Harrison SM, Edwards AB, Smith LT, Choi ES, Arevalo MK, Chen C, Zhang S, Kern AJ, Scheuerle AE, Sanchez EJ, Xing C, Baker LA. Prune belly syndrome in surviving males can be caused by Hemizygous missense mutations in the X-linked Filamin A gene. BMC MEDICAL GENETICS 2020; 21:38. [PMID: 32085749 PMCID: PMC7035669 DOI: 10.1186/s12881-020-0973-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
Background Prune belly syndrome (PBS) is a rare, multi-system congenital myopathy primarily affecting males that is poorly described genetically. Phenotypically, its morbidity spans from mild to lethal, however, all isolated PBS cases manifest three cardinal pathological features: 1) wrinkled flaccid ventral abdominal wall with skeletal muscle deficiency, 2) urinary tract dilation with poorly contractile smooth muscle, and 3) intra-abdominal undescended testes. Despite evidence for a genetic basis, previously reported PBS autosomal candidate genes only account for one consanguineous family and single cases. Methods We performed whole exome sequencing (WES) of two maternal adult half-brothers with syndromic PBS (PBS + Otopalatodigital spectrum disorder [OPDSD]) and two unrelated sporadic individuals with isolated PBS and further functionally validated the identified mutations. Results We identified three unreported hemizygous missense point mutations in the X-chromosome gene Filamin A (FLNA) (c.4952 C > T (p.A1448V), c.6727C > T (p.C2160R), c.5966 G > A (p.G2236E)) in two related cases and two unrelated sporadic individuals. Two of the three PBS mutations map to the highly regulatory, stretch-sensing Ig19–21 region of FLNA and enhance binding to intracellular tails of the transmembrane receptor β-integrin 1 (ITGβ1). Conclusions FLNA is a regulatory actin-crosslinking protein that functions in smooth muscle cells as a mechanosensing molecular scaffold, transmitting force signals from the actin-myosin motor units and cytoskeleton via binding partners to the extracellular matrix. This is the first evidence for an X-linked cause of PBS in multiple unrelated individuals and expands the phenotypic spectrum associated with FLNA in males surviving even into adulthood.
Collapse
Affiliation(s)
- Nida S Iqbal
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| | - Thomas A Jascur
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Steven M Harrison
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angelena B Edwards
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Luke T Smith
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Erin S Choi
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Michelle K Arevalo
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Catherine Chen
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Shaohua Zhang
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Adam J Kern
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Angela E Scheuerle
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,McDermott Center for Human Growth and Development, Department of Bioinformatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Emma J Sanchez
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Children's Health Dallas, 2350 N. Stemmons Freeway, Suite F4300, Dallas, TX, 75207, USA
| | - Chao Xing
- McDermott Center for Human Growth and Development, Department of Bioinformatics, Department of Clinical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA. .,Children's Health Dallas, 2350 N. Stemmons Freeway, Suite F4300, Dallas, TX, 75207, USA.
| |
Collapse
|
4
|
Judy E, Kishore N. A look back at the molten globule state of proteins: thermodynamic aspects. Biophys Rev 2019; 11:365-375. [PMID: 31055760 PMCID: PMC6557940 DOI: 10.1007/s12551-019-00527-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Interest in protein folding intermediates lies in their significance to protein folding pathways. The molten globule (MG) state is one such intermediate lying on the kinetic (and sometimes thermodynamic) pathway between native and unfolded states. Development of our qualitative and quantitative understanding of the MG state can provide deeper insight into the folding pathways and hence potentially facilitate solution of the protein folding problem. An extensive look at literature suggests that most studies into protein MG states have been largely qualitative. Attempts to obtain quantitative insights into MG states have involved application of high-sensitivity calorimetry (differential scanning calorimetry and isothermal titration calorimetry). This review addresses the progress made in this direction by discussing the knowledge gained to date, along with the future promise of calorimetry, in providing quantitative information on the structural features of MG states. Particular attention is paid to the question of whether such states share common structural features or not. The difference in the nature of the transition from the MG state to the unfolded state, in terms of cooperativity, has also been addressed and discussed.
Collapse
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076 India
| |
Collapse
|