1
|
Klein-Goldberg A, Voloshin T, Zemer Tov E, Paz R, Somri-Gannam L, Volodin A, Koren L, Lifshitz L, Meir A, Shabtay-Orbach A, Blatt R, Cahal S, Tempel-Brami C, Wainer-Katsir K, Kan T, Koltun B, Brant B, Barsheshet Y, Haber A, Giladi M, Weinberg U, Palti Y. Role of the PI3K/AKT signaling pathway in the cellular response to Tumor Treating Fields (TTFields). Cell Death Dis 2025; 16:210. [PMID: 40148314 PMCID: PMC11950169 DOI: 10.1038/s41419-025-07546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Tumor Treating Fields (TTFields) are electric fields that induce cancer cell death. Genomic analysis of glioblastoma tumors resected from TTFields-treated patients suggested a potential link between a reduced or absent response to TTFields and activating mutations in the phosphatidylinositol 3-kinase (PI3K) p110α subunit (PIK3CA). Our study aimed to investigate the role of the PI3K/AKT pathway in the response to TTFields. We tested changes in signaling pathways in control versus TTFields-treated U-87 MG glioblastoma, A2780 ovarian carcinoma, and H1299 non-small cell lung cancer (NSCLC) cells using the Luminex multiplex assay, validated by western blot analysis and inhibition assays. We also performed in vivo validation using immunohistochemistry on tumor sections from animals bearing orthotopic N1-S1 hepatocellular, MOSE-L ovarian, or LL/2 lung tumors that were treated with TTFields or sham. Finally, we examined the efficacy of concomitant treatment with TTFields and PI3K inhibitors in cell lines and mouse models. Our findings elucidate the mechanisms driving PI3K/AKT activation following TTFields treatment, revealing that the AKT signaling amplitude increases over time and is influenced by cell-surface and cell-cell interactions. Specifically, focal adhesion kinase (FAK) and N-cadherin were found to promote AKT phosphorylation, activating cell survival pathways. Furthermore, our investigation revealed that pharmacological inhibition of PI3K sensitized cancer cells to TTFields, both in vitro and in vivo. Our research suggests that the PI3K/AKT pathway is involved in cancer cell response to TTFields, and that inhibition of this pathway may serve as a potential therapeutic target for sensitizing cancer cells to TTFields.
Collapse
|
2
|
Jo M, Lee JS, Tocheny CE, Lero MW, Bui QT, Morgan JS, Shaw LM. Fluorescent tagging of endogenous IRS2 with an auxin-dependent degron to assess dynamic intracellular localization and function. J Biol Chem 2024; 300:107796. [PMID: 39305958 PMCID: PMC11513485 DOI: 10.1016/j.jbc.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Insulin Receptor Substrate 2 (IRS2) is a signaling adaptor protein for the insulin (IR) and Insulin-like Growth Factor-1 (IGF-1R) receptors. In breast cancer, IRS2 contributes to both the initiation of primary tumor growth and the establishment of secondary metastases through regulation of cancer stem cell (CSC) function and invasion. However, how IRS2 mediates its diverse functions is not well understood. We used CRISPR/Cas9-mediated gene editing to modify endogenous IRS2 to study the expression, localization, and function of this adaptor protein. A cassette containing an auxin-inducible degradation (AID) sequence, 3x-FLAG tag, and mNeon-green was introduced at the N-terminus of the IRS2 protein to provide rapid and reversible control of IRS2 protein degradation and analysis of endogenous IRS2 expression and localization. Live fluorescence imaging of these cells revealed that IRS2 shuttles between the cytoplasm and nucleus in response to growth regulatory signals in a PI3K-dependent manner. Inhibition of nuclear export or deletion of a putative nuclear export sequence in the C-terminal tail promotes nuclear retention of IRS2, implicating nuclear export in the mechanism by which IRS2 intracellular localization is regulated. Moreover, the acute induction of IRS2 degradation reduces tumor cell invasion, demonstrating the potential for therapeutic targeting of this adaptor protein. Our data highlight the value of our model of endogenously tagged IRS2 as a tool to study IRS2 localization and function.
Collapse
Affiliation(s)
- Minjeong Jo
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Ji-Sun Lee
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Claire E Tocheny
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Quyen Thu Bui
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jennifer S Morgan
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
3
|
Le C, Hu X, Tong L, Ye X, Zhang J, Yan J, Sherchan P, Zhang JH, Gao F, Tang J. Inhibition of LAR attenuates neuroinflammation through RhoA/IRS-1/Akt signaling pathway after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2023; 43:869-881. [PMID: 36802818 PMCID: PMC10196755 DOI: 10.1177/0271678x231159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/23/2023]
Abstract
Leukocyte common antigen-related phosphatase (LAR) is widely expressed in the central nervous system and is known to regulate a variety of processes including cell growth, differentiation, and inflammation. However, little is currently known about LAR signaling mediated neuroinflammation after intracerebral hemorrhage (ICH). The objective of this study was to investigate the role of LAR in ICH using autologous blood injection-induced ICH mouse model. Expression of endogenous proteins, brain edema and neurological function after ICH were evaluated. Extracellular LAR peptide (ELP), an inhibitor of LAR, was administered to ICH mice and outcomes were evaluated. LAR activating-CRISPR or IRS inhibitor NT-157 was administered to elucidate the mechanism. The results showed that expressions of LAR, its endogenous agonist chondroitin sulfate proteoglycans (CSPGs) including neurocan and brevican, and downstream factor RhoA increased after ICH. Administration of ELP reduced brain edema, improved neurological function, and decreased microglia activation after ICH. ELP decreased RhoA and phosphorylated serine-IRS1, increased phosphorylated tyrosine-IRS1 and p-Akt, and attenuated neuroinflammation after ICH, which was reversed by LAR activating-CRISPR or NT-157. In conclusion, this study demonstrated that LAR contributed to neuroinflammation after ICH via RhoA/IRS-1 pathway, and ELP may be a potential therapeutic strategy to attenuate LAR mediated neuroinflammation after ICH.
Collapse
Affiliation(s)
- Chensheng Le
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurology, Ningbo
Medical Center Lihuili Hospital, Ningbo, China
| | - Xin Hu
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, West
China Hospital, Sichuan University, Chengdu, China
| | - Lusha Tong
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Xianghua Ye
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Junyi Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Neurosurgery, Guangxi
Medical University Cancer Hospital, Nanning, China
| | - Prativa Sherchan
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Feng Gao
- Department of Neurology, The Second
Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou,
China
| | - Jiping Tang
- Department of Physiology and
Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
4
|
Zhang W, Raza SHA, Li B, Sun B, Wang S, Pant SD, Al-Abbas NS, Shaer NA, Zan L. miR-33a Inhibits the Differentiation of Bovine Preadipocytes through the IRS2-Akt Pathway. Genes (Basel) 2023; 14:529. [PMID: 36833456 PMCID: PMC9957011 DOI: 10.3390/genes14020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Several microRNAs (miRNAs) are known to participate in adipogenesis. However, their role in this process, especially in the differentiation of bovine preadipocytes, remains to be elucidated. This study was intended to clarify the effect of microRNA-33a (miR-33a) on the differentiation of bovine preadipocytes by cell culture, real-time fluorescent quantitative PCR (qPCR), Oil Red staining, BODIPY staining, and Western blotting. The results indicate that overexpression of miR-33a significantly inhibited lipid droplet accumulation and decreased the mRNA and protein expression of adipocyte differentiation marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and fatty acid-binding protein 4 (FABP4). In contrast, the interference expression of miR-33a promoted lipid droplet accumulation and increased the expression of marker genes. Additionally, miR-33a directly targeted insulin receptor substrate 2 (IRS2) and regulated the phosphorylation level of serine/threonine kinase (Akt). Furthermore, miR-33a inhibition could rescue defects in the differentiation of bovine preadipocytes and the Akt phosphorylation level caused by small interfering IRS2 (si-IRS2). Collectively, these results indicate that miR-33a could inhibit the differentiation of bovine preadipocytes, possibly through the IRS2-Akt pathway. These findings might help develop practical means to improve the quality of beef.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sameer D. Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Nouf S. Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nehad A. Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Zhang X, Varma S, Yee D. Suppression of Insulin Receptor Substrate 1 Inhibits Breast Cancer Growth In Vitro and in Female Athymic Mice. Endocrinology 2023; 164:bqac214. [PMID: 36610717 PMCID: PMC10091499 DOI: 10.1210/endocr/bqac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Targeting the type I insulin-like growth factor receptor (IGF-IR) has not been successful in breast cancer. Data suggest the highly homologous insulin receptor (IR) may be an alternate growth stimulatory pathway used by cancer cells. Since both receptors phosphorylate the insulin receptor substrate 1 (IRS-1) protein as an immediate consequence of ligand binding, disruption of both receptors could be accomplished by suppression of IRS-1. IRS-1 gene deletion by CRISPR/Cas9 editing resulted in suppression of IGF-I, insulin, and estrogen-stimulated growth in hormone-dependent MCF-7L breast cancer cells. A doxycycline-inducible IRS-1 shRNA lentiviral construct was also used to infect MCF-7L breast cancer cells. IRS-1 shRNA downregulation resulted in decreased responses to IGF-I, insulin, and estradiol in monolayer and anchorage-independent growth assays. Decreased IRS-1 levels also suppressed estradiol-stimulated gene expression and estrogen receptor binding to DNA. Xenograft growth was also inhibited by induction of IRS-1 shRNA. These data show that IRS-1 is a critical regulator of endocrine responsive breast cancer. Efforts to target this adaptor protein could have broader growth inhibitory effects and receptor targeting.
Collapse
Affiliation(s)
- Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sidhant Varma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
The Role of Runx2 in Microtubule Acetylation in Bone Metastatic Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14143436. [PMID: 35884497 PMCID: PMC9323014 DOI: 10.3390/cancers14143436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 12/10/2022] Open
Abstract
Bone metastasis of breast cancer results in severe bone loss, fractures, and death. Crosstalk between breast cancer cells and bone resident cells promotes osteoclast activity and the release of growth factors from the bone matrix resulting in aggressive tumor growth and bone loss. We and others have shown that Runt-related transcription factor-2 (Runx2) promotes metastatic tumor growth-associated bone loss. Breast cancer cells also induce autophagy to survive metabolic stress at the metastatic site. Recently, we reported a Runx2-dependent increase in autophagy. In this study, to examine the underlying mechanisms of metastasis and tumor resistance to stress, we used a bone metastatic isogenic variant of breast cancer MDA-MB-231 cells isolated from a xenograft tumor mouse model of metastasis. Our results with immunofluorescence and biochemical approaches revealed that Runx2 promotes microtubule (MT) stability to facilitate autophagy. Stable MTs are critical for autophagosome trafficking and display increased acetylation at Lysine 40 of α-tubulin. Runx2 silencing decreases acetylated α-tubulin levels. The expression levels of HDAC6 and αTAT1, which serve to regulate the acetylation of α-tubulin, were not altered with Runx2 silencing. We found that HDAC6 interaction with α-tubulin is inhibited by Runt-related factor-2 (Runx2). We show that the expression of wild-type Runx2 can restore the acetylated polymer of MTs in Runx2 knockdown cells, while the C-terminal deletion mutant fails to rescue the polymer of MTs. Importantly, cellular stress, such as glucose starvation also increases the acetylation of α-tubulin. We found that the loss of Runx2 increases the sensitivity of breast cancer cells to MT-targeting agents. Overall, our results indicate a novel regulatory mechanism of microtubule acetylation and suggest that Runx2 and acetylated microtubules may serve as therapeutic targets for bone metastatic tumors.
Collapse
|
7
|
Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022; 14:1652. [PMID: 35406424 PMCID: PMC8997157 DOI: 10.3390/cancers14071652] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The PI3K/AKT signaling pathway plays essential roles in multiple cellular processes, which include cell growth, survival, metabolism, and motility. In response to internal and external stimuli, the PI3K/AKT signaling pathway co-opts other signaling pathways, cellular components, and cytoskeletal proteins to reshape individual cells. The cytoskeletal network comprises three main components, which are namely the microfilaments, microtubules, and intermediate filaments. Collectively, they are essential for many fundamental structures and cellular processes. In cancer, aberrant activation of the PI3K/AKT signaling cascade and alteration of cytoskeletal structures have been observed to be highly prevalent, and eventually contribute to many cancer hallmarks. Due to their critical roles in tumor progression, pharmacological agents targeting PI3K/AKT, along with cytoskeletal components, have been developed for better intervention strategies against cancer. In our review, we first discuss existing evidence in-depth and then build on recent advances to propose new directions for therapeutic intervention.
Collapse
Affiliation(s)
- Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Hin Chong Leong
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Arpita Datta
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Departments of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (S.D.); (V.G.)
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
8
|
Lero MW, Shaw LM. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol Cell Endocrinol 2021; 527:111213. [PMID: 33607269 PMCID: PMC8035314 DOI: 10.1016/j.mce.2021.111213] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.
Collapse
Affiliation(s)
- Michael W Lero
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Leslie M Shaw
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Hao P, Huang Y, Peng J, Yu J, Guo X, Bao F, Dian Z, An S, Xu TR. IRS4 promotes the progression of non-small cell lung cancer and confers resistance to EGFR-TKI through the activation of PI3K/Akt and Ras-MAPK pathways. Exp Cell Res 2021; 403:112615. [PMID: 33894221 DOI: 10.1016/j.yexcr.2021.112615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/13/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
IRS4 is a member of the insulin receptor substrate (IRS) protein family. It acts as a cytoplasmic adaptor protein, integrating and transmitting signals from receptor protein tyrosine kinases to the intracellular environment. IRS4 can induce mammary tumorigenesis and is usually overexpressed in non-small cell lung cancer (NSCLC). However, little is known about the role of IRS4 in the development and progression of lung cancer. In this study, we show that IRS4 knockout suppresses the proliferation, colony formation, migration, and invasion of A549 lung cancer cells, as well as tumor growth in a nude mouse xenograft model. In contrast, stable expression of IRS4 showed the opposite effects. As expected, IRS4 was found to activate the PI3K/Akt and Ras-MAPK pathways, and we also showed that IRS4 depletion significantly enhanced the sensitivity of EGFR tyrosine kinase inhibitor (EGFR-TKI)-resistant cells to gefitinib. Taken together, these results show that IRS4 promotes NSCLC progression and may represent a potential therapeutic target for EGFR-TKI-resistant NSCLC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gefitinib/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Huang
- Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China; The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing, 210018, China
| | - Jun Peng
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Jiaojiao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoxi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Ziqin Dian
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
10
|
Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer 2021; 124:217-227. [PMID: 33144693 PMCID: PMC7782753 DOI: 10.1038/s41416-020-01094-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progesterone receptors (PR) are potent modifiers of endocrine responses. In aberrant signalling cancer contexts, phosphorylation events dramatically alter steroid hormone receptor action. METHODS The transcriptomes of primary tumours and metastases in mice harbouring ER+ breast cancer patient-derived xenografts (PDXs) were analysed following single-cell RNAseq. In vitro assays were employed to delineate mechanisms of endocrine resistance and stemness. RESULTS A 16-gene phospho-Ser294 PR (p-PR) signature predicted poor outcome in ER+ breast cancer. Relative to primary PDX tumours, metastatic lesions expressed abundant p-PR and exhibited an activated PR gene programme with elevated expression of PGR and IRS-1. Breast cancer models of activated PR lost the expression of IGF1R and acquired insulin hypersensitivity with tamoxifen insensitivity. Activated p-PR+ breast cancer cells formed increased tumourspheres with enlarged ALDH+ and CD24-/CD44 populations. E2 induced PR/IRS-1 interaction and exchange of IGF1Rβ for IRS-1 in p-PR-containing transcriptional complexes. Inhibition of IRS-1 or IR and inducible IRS-1 knockdown reduced tumourspheres. Endocrine-resistant models of luminal B breast cancer induced p-PR in 3D cultures and required PR and IRS-1 for tumoursphere formation. CONCLUSIONS Phospho-PR-B cooperates with IRS-1 to promote outgrowth of endocrine-resistant and stem-like breast cancer cells. Targeting phospho-PR/IRS-1 crosstalk may block the emergence of endocrine resistance.
Collapse
|
11
|
The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem Sci 2019; 45:96-107. [PMID: 31812462 DOI: 10.1016/j.tibs.2019.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
During interphase, filamentous actin, microtubules, and intermediate filaments regulate cell shape, motility, transport, and interactions with the environment. These activities rely on signaling events that control cytoskeleton properties. Recent studies uncovered mechanisms that go far beyond this one-directional flow of information. Thus, the three branches of the cytoskeleton impinge on signaling pathways to determine their activities. We propose that this regulatory role of the cytoskeleton provides sophisticated mechanisms to control the spatiotemporal output and the intensity of signaling events. Specific examples emphasize these emerging contributions of the cytoskeleton to cell physiology. In our opinion, further exploration of these pathways will uncover new concepts of cellular communication that originate from the cytoskeleton.
Collapse
|
12
|
Cullin7 enhances resistance to trastuzumab therapy in Her2 positive breast cancer via degrading IRS-1 and downregulating IGFBP-3 to activate the PI3K/AKT pathway. Cancer Lett 2019; 464:25-36. [PMID: 31461670 DOI: 10.1016/j.canlet.2019.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Patients with Her2-positive breast cancer exhibit de novo resistance or develop acquired resistance in less than one year after Her2 targeting treatment, but the mechanism is not fully elucidated. Compensatory pathways such as the IGF-1R/IRS-1 pathway, are activated, leading to aberrant enhanced PI3K/Akt/mTOR pathway activity to attenuate the efficacy of trastuzumab. Cullin7 could participate in the degradation of IRS-1 in a mTOR/S6K dependent manner. Whether Cullin7 participates in trastuzumab resistance needs to be further investigated. Here, we reveals that Cullin7 is overexpressed in trastuzumab-resistant Her2 positive breast cancer cells. Knockdown of Cullin7 reduces degradation of Ser phosphorylation of IRS-1, attenuates activation of the PI3K/AKT pathway, and partly restores trastuzumab sensitivity in trastuzumab-resistant Her2 positive breast cancer cells. IGFBP-3 expression is decreased in trastuzumab-resistant Her2 positive breast cancer cells, which leads to release of the Wnt signaling pathway inhibition and an increase in Cullin7 expression, as mediated by TCF7L2. Overexpression of Cullin7 in Her2-amplified breast cancer tissues has clinical implications because it positively correlates with shorter disease-free survival (DFS) and inadequate response to trastuzumab. Thus, our results suggest a critical role for Cullin7 in response to trastuzumab, which has significant implications for selection of the optimal therapeutic strategy for Her2 positive breast cancers.
Collapse
|
13
|
Zhao J, Li Z, Chen Y, Zhang S, Guo L, Gao B, Jiang Y, Tian W, Hao S, Zhang X. MicroRNA‑766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating the PI3K/Akt pathway. Int J Oncol 2018; 54:315-325. [PMID: 30387841 DOI: 10.3892/ijo.2018.4615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are widely dysregulated in papillary thyroid cancer (PTC). Dysregulated miRNAs, together with their target genes, comprise a complex network that has been implicated in the regulation of PTC pathogenesis. Further knowledge of the functional roles of aberrantly expressed miRNAs in PTC, and the underlying molecular mechanisms, may assist in the identification of novel therapeutic targets. miR‑766 has been well studied in human cancer; however, the expression status, specific roles and regulatory mechanisms of miR‑766 in PTC remain unclear. The present study aimed to detect miR‑766 expression in PTC tissues and cell lines, to explore the biological roles of miR‑766 in the malignant biological behaviors of PTC cells, and to determine the underlying mechanism of action of miR‑766 in PTC cells. The results revealed that miR‑766 was downregulated in PTC tissues and cell lines, and its downregulation was strongly associated with TNM stage and lymph node metastasis. Overexpression of miR‑766 inhibited PTC cell proliferation, colony formation, migration and invasion, promoted cell apoptosis and reduced tumor growth in vivo. Mechanistically, insulin receptor substrate 2 (IRS2) was identified as a direct target of miR‑766 in PTC cells. IRS2 was upregulated in PTC tissues, and this was inversely correlated with miR‑766 expression. Inhibition of IRS2 simulated the tumor suppressor activity of miR‑766 in PTC cells. Restoration of IRS2 expression negated the tumor‑suppressing effects of miR‑766 overexpression on PTC cells. Notably, miR‑766 directly targeted IRS2 to inhibit activation of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) pathway in PTC cells in vitro and in vivo. Overall, these findings indicated that miR‑766 may inhibit the malignant biological behaviors of PTC cells by directly targeting IRS2 and regulating the PI3K/Akt pathway, thus suggesting that this miRNA may be a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Jianjie Zhao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Lingji Guo
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bo Gao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yan Jiang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shuai Hao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
14
|
Insulin Receptor Substrate Suppression by the Tyrphostin NT157 Inhibits Responses to Insulin-Like Growth Factor-I and Insulin in Breast Cancer Cells. Discov Oncol 2018; 9:371-382. [PMID: 30229539 DOI: 10.1007/s12672-018-0343-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) signaling systems regulate breast cancer growth, progression, and metastasis. The insulin receptor substrates 1 and 2 (IRS1/2) transduce signaling from the type I IGF receptor (IGF-IR) and insulin receptor (InR) to mediate the biological effects of receptor activation. In breast cancer, IRS-1 plays a critical role in cancer cell proliferation while IRS-2 is associated with motility and metastasis. NT157, a small-molecule tyrphostin, downregulates IRS proteins in several model systems. In breast cancer cells, NT157 treatment suppressed IRS protein expression in a dose-dependent manner. Exposure to NT157 inhibited the activation of downstream signaling mediated by the IRS proteins. NT157 induced a MAPK-dependent serine phosphorylation of IRS proteins which resulted in disassociation between IRS proteins and their receptors resulting in IRS degradation. In estrogen receptor-α-positive (ERα+) breast cancer cells (MCF-7 and T47D), NT157 also resulted in cytoplasmic ERα downregulation likely because of disruption of an IRS-1-IGF-IR/InR/ERα complex. NT157 decreased S phase fraction, monolayer, and anchorage-independent growth after IGF/insulin treatment in ERα+ breast cancer cells. NT157 downregulation of IRS protein expression also sensitized ERα+ breast cancer cells to rapamycin. Moreover, NT157 inhibited the growth of tamoxifen-resistant ERα+ breast cancer cells. Given that both IGF-IR and InR play a role in cancer biology, targeting of IRS adaptor proteins may be a more effective strategy to inhibit the function of these receptors.
Collapse
|
15
|
Jian W, Zhang X, Wang J, Liu Y, Hu C, Wang X, Liu R. Scinderin-knockdown inhibits proliferation and promotes apoptosis in human breast carcinoma cells. Oncol Lett 2018; 16:3207-3214. [PMID: 30127916 DOI: 10.3892/ol.2018.9009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/11/2018] [Indexed: 01/16/2023] Open
Abstract
Previous studies have reported that scinderin (SCIN) affects multiple cellular processes, including proliferation, migration and differentiation in cancer. However, the specific role of SCIN in breast cancer (BC) cells is unknown. Immunohistochemistry was used to investigate SCIN expression in 46 BC and 21 mammary fibroadenoma or fibroadenomatoid hyperplasia tissue samples. SCIN expression was ablated in MDA-MB-231 and T-47D cells using lentivirus-mediated small interfering RNA technology. Cell proliferation was tested using Celigo and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell apoptosis was analyzed by measuring Caspase 3/7 activity and annexin-V staining. The results of the present study demonstrated that SCIN expression was elevated in BC tissues compared with mammary fibroadenoma or fibroadenomatoid hyperplasia tissues. Specifically, higher SCIN expression was observed in Ki-67-positive BC tissues (78.6%) compared with Ki-67-negative BC tissues. Furthermore, knockdown of SCIN expression in the BC cell lines significantly suppressed cell proliferation and induced apoptosis. The data presented in the present study indicate that SCIN serves an important role in the development of breast cancer.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xiaoli Zhang
- Central Laboratory, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Jiguo Wang
- Department of Medical Oncology, Baoan District Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518133, P.R. China
| | - Yunlong Liu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chuting Hu
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xianming Wang
- Department of Thyroid and Breast Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Renbin Liu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
16
|
Identification of a Novel Invasion-Promoting Region in Insulin Receptor Substrate 2. Mol Cell Biol 2018; 38:MCB.00590-17. [PMID: 29685905 DOI: 10.1128/mcb.00590-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/15/2018] [Indexed: 12/13/2022] Open
Abstract
Although the insulin receptor substrate (IRS) proteins IRS1 and IRS2 share considerable homology and activate common signaling pathways, their contributions to breast cancer are distinct. IRS1 has been implicated in the proliferation and survival of breast tumor cells. In contrast, IRS2 facilitates glycolysis, invasion, and metastasis. To determine the mechanistic basis for IRS2-dependent functions, we investigated unique structural features of IRS2 that are required for invasion. Our studies revealed that the ability of IRS2 to promote invasion is dependent upon upstream insulin-like growth factor 1 receptor (IGF-1R)/insulin receptor (IR) activation and the recruitment and activation of phosphatidylinositol 3-kinase (PI3K), functions shared with IRS1. In addition, a 174-amino-acid region in the IRS2 C-terminal tail, which is not conserved in IRS1, is also required for IRS2-mediated invasion. Importantly, this "invasion (INV) region" is sufficient to confer invasion-promoting ability when swapped into IRS1. However, the INV region is not required for the IRS2-dependent regulation of glucose uptake. Bone morphogenetic protein 2-inducible kinase (BMP2K) binds to the INV region and contributes to IRS2-dependent invasion. Taken together, our data advance the mechanistic understanding of how IRS2 regulates invasion and reveal that IRS2 functions important for cancer can be independently targeted without interfering with the metabolic activities of this adaptor protein.
Collapse
|
17
|
Miao SB, Xie XL, Yin YJ, Zhao LL, Zhang F, Shu YN, Chen R, Chen P, Dong LH, Lin YL, Lv P, Zhang DD, Nie X, Xue ZY, Han M. Accumulation of Smooth Muscle 22α Protein Accelerates Senescence of Vascular Smooth Muscle Cells via Stabilization of p53 In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2017; 37:1849-1859. [DOI: 10.1161/atvbaha.117.309378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sui-Bing Miao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xiao-Li Xie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Juan Yin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Li Zhao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Fan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Nan Shu
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Rong Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Peng Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Hua Dong
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yan-Ling Lin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Pin Lv
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Dan-Dan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xi Nie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Zhen-Ying Xue
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Mei Han
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|