1
|
Hua T, Robitaille M, Roberts-Thomson SJ, Monteith GR. The intersection between cysteine proteases, Ca 2+ signalling and cancer cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119532. [PMID: 37393017 DOI: 10.1016/j.bbamcr.2023.119532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Apoptosis is a highly complex and regulated cell death pathway that safeguards the physiological balance between life and death. Over the past decade, the role of Ca2+ signalling in apoptosis and the mechanisms involved have become clearer. The initiation and execution of apoptosis is coordinated by three distinct groups of cysteines proteases: the caspase, calpain and cathepsin families. Beyond its physiological importance, the ability to evade apoptosis is a prominent hallmark of cancer cells. In this review, we will explore the involvement of Ca2+ in the regulation of caspase, calpain and cathepsin activity, and how the actions of these cysteine proteases alter intracellular Ca2+ handling during apoptosis. We will also explore how apoptosis resistance can be achieved in cancer cells through deregulation of cysteine proteases and remodelling of the Ca2+ signalling toolkit.
Collapse
Affiliation(s)
- Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Han B, Zhen F, Zheng XS, Hu J, Chen XS. Systematic analysis of the expression and prognostic value of ITPR1 and correlation with tumor infiltrating immune cells in breast cancer. BMC Cancer 2022; 22:297. [PMID: 35313846 PMCID: PMC8939201 DOI: 10.1186/s12885-022-09410-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ITPR1 is a key gene for autophagy, but its biological function is still unclear, and there are few studies on the correlation between ITPR1 gene expression and the occurrence and development of breast cancer. METHODS Analyze the expression of ITPR1 through online databases such as Oncomine and TIMER. Kaplan-Meier plotter and other databases were used to evaluate the impact of ITPR1 on clinical prognosis. The expression of ITPR1 in analysis of 145 cases of breast cancer and 30 cases of adjacent normal tissue was detected by Immunohistochemistry. Statistical analysis was used to evaluate the clinical relevance and prognostic significance of abnormally expressed proteins. And the Western Blot was used to detect the expression of ITPR1 between breast cancer tissues and cells. The TIMER database studied the relationship between ITPR1 and cancer immune infiltration. And used the ROC plotter database to predict the response of ITPR1 to chemotherapy, endocrine therapy and anti-HER2 therapy in patients with breast cancer. RESULTS Compared with normal breast samples, ITPR1 was significantly lower in patients with breast cancer. And the increased expression of ITPR1 mRNA was closely related to longer overall survival (OS), distant metastasis free survival (DMFS), disease specific survival (DSS) and relapse free survival (RFS) in breast cancer. And the expression level of ITPR1 was higher in patients treated with chemotherapy than untreated patients. In addition, the expression of ITPR1 was positively correlated with related gene markers of immune cells in different types of breast cancer, especially with BRCA basal tissue breast cancer. CONCLUSION ITPR1 was lower expressed in breast cancer. The higher expression of ITPR1 suggested favorable prognosis for patients. ITPR1 was related to the level of immune infiltration, especially in BRCA-Basal patients. All research results indicated that ITPR1 might affect breast cancer prognosis and participate in immune regulation. In short, ITPR1 might be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Bing Han
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Fang Zhen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Xiu-Shuang Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, China
| | - Jing Hu
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Xue-Song Chen
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| |
Collapse
|
3
|
Bassett JJ, Robitaille M, Peters AA, Bong AHL, Taing MW, Wood IA, Sadras F, Roberts-Thomson SJ, Monteith GR. ORAI1 regulates sustained cytosolic free calcium fluctuations during breast cancer cell apoptosis and apoptotic resistance via a STIM1 independent pathway. FASEB J 2021; 36:e22108. [PMID: 34939697 DOI: 10.1096/fj.202002031rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Excessive rapid increases in cytosolic free Ca2+ have a clear association with the induction of cancer cell death. Whereas, characterizing the Ca2+ signaling events that occur during the progression of the apoptotic cascade over a period of hours or days, has not yet been possible. Now using genetically encoded Ca2+ indicators complemented with automated epifluorescence microscopy we have shown that staurosporine-induced apoptosis in MDA-MB-231 breast cancer cells was associated with delayed development of cytosolic free Ca2+ fluctuations, which were then maintained for 24 h. These cytosolic free Ca2+ fluctuations were dependent on the Ca2+ channel ORAI1. Silencing of ORAI1, but not its canonical activators STIM1 and STIM2, promoted apoptosis in this model. The pathway for this regulation implicates a mechanism previously associated with the migration of cancer cells involving ORAI1, the chaperone protein SigmaR1, and Ca2+ -activated K+ channels.
Collapse
Affiliation(s)
- John J Bassett
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia A Peters
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Alice H L Bong
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Meng-Wong Taing
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian A Wood
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| | - Francisco Sadras
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Schultz B, Taday J, Menezes L, Cigerce A, Leite MC, Gonçalves CA. Calpain-Mediated Alterations in Astrocytes Before and During Amyloid Chaos in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1415-1430. [PMID: 34719501 DOI: 10.3233/jad-215182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-β clearance in astrocytes, as opposed to amyloid-β accumulation in neurons.
Collapse
Affiliation(s)
- Bruna Schultz
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Menezes
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson Cigerce
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Leite
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Danese A, Leo S, Rimessi A, Wieckowski MR, Fiorica F, Giorgi C, Pinton P. Cell death as a result of calcium signaling modulation: A cancer-centric prospective. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119061. [PMID: 33991539 DOI: 10.1016/j.bbamcr.2021.119061] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) and the complex regulatory system governed by Ca2+ signaling have been described to be of crucial importance in numerous aspects related to cell life and death decisions, especially in recent years. The growing attention given to this second messenger is justified by the pleiotropic nature of Ca2+-binding proteins and transporters and their consequent involvement in cell fate decisions. A growing number of works highlight that deregulation of Ca2+ signaling and homoeostasis is often deleterious and drives pathological conditions; in particular, a disruption of the main Ca2+-mediated death mechanisms may lead to uncontrolled cell growth that results in cancer. In this work, we review the latest useful evidence to better understand the complex network of pathways by which Ca2+ regulates cell life and death decisions.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3 Str., 02-093 Warsaw, Poland
| | | | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
6
|
Mo G, Liu X, Zhong Y, Mo J, Li Z, Li D, Zhang L, Liu Y. IP3R1 regulates Ca 2+ transport and pyroptosis through the NLRP3/Caspase-1 pathway in myocardial ischemia/reperfusion injury. Cell Death Dis 2021; 7:31. [PMID: 33568649 PMCID: PMC7876122 DOI: 10.1038/s41420-021-00404-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Intracellular ion channel inositol 1,4,5-triphosphate receptor (IP3R1) releases Ca2+ from endoplasmic reticulum. The disturbance of IP3R1 is related to several neurodegenerative diseases. This study investigated the mechanism of IP3R1 in myocardial ischemia/reperfusion (MI/R). After MI/R modeling, IP3R1 expression was silenced in myocardium of MI/R rats to explore its role in the concentration of myocardial enzymes, infarct area, Ca2+ level, NLRP3/Caspase-1, and pyroptosis markers and inflammatory factors. The adult rat cardiomyocytes were isolated and cultured to establish hypoxia/reperfusion (H/R) cell model. The expression of IP3R1 was downregulated or ERP44 was overexpressed in H/R-induced cells. Nifedipine D6 was added to H/R-induced cells to block Ca2+ channel or Nigericin was added to activate NLRP3. IP3R1 was highly expressed in myocardium of MI/R rats, and silencing IP3R1 alleviated MI/R injury, reduced Ca2+ overload, inflammation and pyroptosis in MI/R rats, and H/R-induced cells. The binding of ERP44 to IP3R1 inhibited Ca2+ overload, alleviated cardiomyocyte inflammation, and pyroptosis. The increase of intracellular Ca2+ level caused H/R-induced cardiomyocyte pyroptosis through the NLRP3/Caspase-1 pathway. Activation of NLRP3 pathway reversed the protection of IP3R1 inhibition/ERP44 overexpression/Nifedipine D6 on H/R-induced cells. Overall, ERP44 binding to IP3R1 inhibits Ca2+ overload, thus alleviating pyroptosis and MI/R injury.
Collapse
Affiliation(s)
- Guixi Mo
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Xin Liu
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Yiyue Zhong
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Jian Mo
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Zhiyi Li
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Daheng Li
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Liangqing Zhang
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| | - Yijun Liu
- grid.410560.60000 0004 1760 3078Department of Anesthesiology, Affiliated Hospital of Guangdong Medical university, Zhanjiang, Guangdong P.R. China
| |
Collapse
|
7
|
Lemos FO, Guerra MT, Leite MDF. Inositol 1,4,5 trisphosphate receptors in secretory epithelial cells of the gastrointestinal tract. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
New Insights in the IP 3 Receptor and Its Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:243-270. [PMID: 31646513 DOI: 10.1007/978-3-030-12457-1_10] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a Ca2+-release channel mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms are responsible for the generation of intracellular Ca2+ signals that may spread across the entire cell or occur locally in so-called microdomains. Because of their ubiquitous expression, these channels are involved in the regulation of a plethora of cellular processes, including cell survival and cell death. To exert their proper function a fine regulation of their activity is of paramount importance. In this review, we will highlight the recent advances in the structural analysis of the IP3R and try to link these data with the newest information concerning IP3R activation and regulation. A special focus of this review will be directed towards the regulation of the IP3R by protein-protein interaction. Especially the protein family formed by calmodulin and related Ca2+-binding proteins and the pro- and anti-apoptotic/autophagic Bcl-2-family members will be highlighted. Finally, recently identified and novel IP3R regulatory proteins will be discussed. A number of these interactions are involved in cancer development, illustrating the potential importance of modulating IP3R-mediated Ca2+ signaling in cancer treatment.
Collapse
|
9
|
Lemos FDO, Florentino RM, Lima Filho ACM, Santos MLD, Leite MF. Inositol 1,4,5-trisphosphate receptor in the liver: Expression and function. World J Gastroenterol 2019; 25:6483-6494. [PMID: 31802829 PMCID: PMC6886013 DOI: 10.3748/wjg.v25.i44.6483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is a complex organ that performs several functions to maintain homeostasis. These functions are modulated by calcium, a second messenger that regulates several intracellular events. In hepatocytes and cholangiocytes, which are the epithelial cell types in the liver, inositol 1,4,5-trisphosphate (InsP3) receptors (ITPR) are the only intracellular calcium release channels. Three isoforms of the ITPR have been described, named type 1, type 2 and type 3. These ITPR isoforms are differentially expressed in liver cells where they regulate distinct physiological functions. Changes in the expression level of these receptors correlate with several liver diseases and hepatic dysfunctions. In this review, we highlight how the expression level, modulation, and localization of ITPR isoforms in hepatocytes and cholangiocytes play a role in hepatic homeostasis and liver pathology.
Collapse
Affiliation(s)
- Fernanda de Oliveira Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rodrigo M Florentino
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Antônio Carlos Melo Lima Filho
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marcone Loiola dos Santos
- Department of Cell Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - M Fatima Leite
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
10
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
11
|
Cao X, Chen J, Li D, Xie P, Xu M, Lin W, Li S, Pan G, Tang Y, Xu J, Olkkonen VM, Yan D, Zhong W. ORP4L couples IP 3 to ITPR1 in control of endoplasmic reticulum calcium release. FASEB J 2019; 33:13852-13865. [PMID: 31648575 DOI: 10.1096/fj.201900933rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein-related protein (ORP) 4L acts as a scaffold protein assembling CD3-ε, G-αq/11, and PLC-β3 into a complex at the plasma membrane that mediates inositol (1,4,5)-trisphosphate (IP3)-induced endoplasmic reticulum (ER) Ca2+ release and oxidative phosphorylation in T-cell acute lymphoblastic leukemia cells. Here, we offer new evidence that ORP4L interacts with the carboxyl terminus of the IP3 receptor type 1 (ITPR1) in Jurkat T cells. ORP4L enables IP3 binding to ITPR1; a truncated construct that lacks the ITPR1-binding region retains the ability to increase IP3 production but fails to mediate IP3 and ITPR1 binding. In association with this ability of ORP4L, it enhances Ca2+ release from the ER and subsequent cytosolic and mitochondrial parallel Ca2+ spike oscillations that stimulate mitochondrial energetics and thus maintains cell survival. These data support a novel model in which ORP4L is a cofactor of ITPR1, which increases ITPR1 sensitivity to IP3 and enables ER Ca2+ release.-Cao, X., Chen, J., Li, D., Xie, P., Xu, M., Lin, W., Li, S., Pan, G., Tang, Y., Xu, J., Olkkonen, V. M., Yan, D., Zhong, W. ORP4L couples IP3 to ITPR1 in control of endoplasmic reticulum calcium release.
Collapse
Affiliation(s)
- Xiuye Cao
- Department of Biology, Jinan University, Guangzhou, China
| | - Jianuo Chen
- Department of Biology, Jinan University, Guangzhou, China
| | - Dan Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Peipei Xie
- Department of Biology, Jinan University, Guangzhou, China
| | - Mengyang Xu
- Department of Biology, Jinan University, Guangzhou, China
| | - Weize Lin
- Department of Biology, Jinan University, Guangzhou, China
| | - Shiqian Li
- Department of Biology, Jinan University, Guangzhou, China
| | - Guoping Pan
- Department of Biology, Jinan University, Guangzhou, China
| | - Yong Tang
- Department of Biology, Jinan University, Guangzhou, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki, Finland
| | - Daoguang Yan
- Department of Biology, Jinan University, Guangzhou, China
| | - Wenbin Zhong
- Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Panizza E, Zhang L, Fontana JM, Hamada K, Svensson D, Akkuratov EE, Scott L, Mikoshiba K, Brismar H, Lehtiö J, Aperia A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na +, K +-ATPase control of cell adhesion, proliferation, and survival. FASEB J 2019; 33:10193-10206. [PMID: 31199885 PMCID: PMC6704450 DOI: 10.1096/fj.201900445r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ion pump Na+, K+-ATPase (NKA) is a receptor for the cardiotonic steroid ouabain. Subsaturating concentration of ouabain triggers intracellular calcium oscillations, stimulates cell proliferation and adhesion, and protects from apoptosis. However, it is controversial whether ouabain-bound NKA is considered a signal transducer. To address this question, we performed a global analysis of protein phosphorylation in COS-7 cells, identifying 2580 regulated phosphorylation events on 1242 proteins upon 10- and 20-min treatment with ouabain. Regulated phosphorylated proteins include the inositol triphosphate receptor and stromal interaction molecule, which are essential for initiating calcium oscillations. Hierarchical clustering revealed that ouabain triggers a structured phosphorylation response that occurs in a well-defined, time-dependent manner and affects specific cellular processes, including cell proliferation and cell-cell junctions. We additionally identify regulation of the phosphorylation of several calcium and calmodulin-dependent protein kinases (CAMKs), including 2 sites of CAMK type II-γ (CAMK2G), a protein known to regulate apoptosis. To verify the significance of this result, CAMK2G was knocked down in primary kidney cells. CAMK2G knockdown impaired ouabain-dependent protection from apoptosis upon treatment with high glucose or serum deprivation. In conclusion, we establish NKA as the coordinator of a broad, tightly regulated phosphorylation response in cells and define CAMK2G as a downstream effector of NKA.-Panizza, E., Zhang, L., Fontana, J. M., Hamada, K., Svensson, D., Akkuratov, E. E., Scott, L., Mikoshiba, K., Brismar, H., Lehtiö, J., Aperia, A. Ouabain-regulated phosphoproteome reveals molecular mechanisms for Na+, K+-ATPase control of cell adhesion, proliferation, and survival.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Liang Zhang
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jacopo Maria Fontana
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Kozo Hamada
- Laboratory for Developmental Neurobiology, Brain Science Institute, Riken, Saitama, Japan
| | - Daniel Svensson
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Evgeny E Akkuratov
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Lena Scott
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Riken, Saitama, Japan
| | - Hjalmar Brismar
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Anita Aperia
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Prole DL, Taylor CW. Structure and Function of IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
14
|
Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells. Dig Dis Sci 2019; 64:25-38. [PMID: 30284136 DOI: 10.1007/s10620-018-5297-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a human disease with multiple causes that leads to autodigestion of the pancreas. There is sufficient evidence to support the key role of sustained increase in cytosolic calcium concentrations in the early pathogenesis of the disease. To clarify the mechanism of maintaining calcium homeostasis in the cell and pathological processes caused by calcium overload would help to research directly targeted therapeutic agents. We will specifically review the following: intracellular calcium homeostasis and regulation, the occurrence of calcium overload in acinar cells, the role of calcium overload in the pathogenesis of AP, the treatment strategy proposed for calcium overload.
Collapse
|
15
|
Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1698-1706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Ion channels are pore-forming protein complexes in membranes that play essential roles in a diverse array of biological activities. Ion channel activity is strictly regulated at multiple levels and by numerous cellular events to selectively activate downstream effectors involved in specific biological activities. For example, ions, binding proteins, nucleotides, phosphorylation, the redox state, channel subunit composition have all been shown to regulate channel activity and subsequently allow channels to participate in distinct cellular events. While these forms of modulation are well documented and have been extensively reviewed, in this article, we will first review and summarize channel proteolysis as a novel and quite widespread mechanism for altering channel activity. We will then highlight the recent findings demonstrating that proteolysis profoundly alters Inositol 1,4,5 trisphosphate receptor activity, and then discuss its potential functional ramifications in various developmental and pathological conditions.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
16
|
Wang L, Wagner LE, Alzayady KJ, Yule DI. Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 2018; 293:13112-13124. [PMID: 29970616 DOI: 10.1074/jbc.ra118.003421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Fine-tuning of the activity of inositol 1,4,5-trisphosphate receptors (IP3R) by a diverse array of regulatory inputs results in intracellular Ca2+ signals with distinct characteristics. These events allow the activation of specific downstream effectors. We reported previously that region-specific proteolysis represents a novel regulatory event for type 1 IP3R (R1). Specifically, caspase-fragmented R1 display a marked increase in single-channel open probability. More importantly, the distinct characteristics of the Ca2+ signals elicited via fragmented R1 can activate alternate downstream effectors. In this report, we expand these studies to investigate whether all IP3R subtypes are regulated by proteolysis. We now show that type 2 and type 3 IP3R (R2 and R3, respectively) are proteolytically cleaved in rodent models of acute pancreatitis. Surprisingly, fragmented IP3R retained tetrameric architecture, remained embedded in endoplasmic reticulum membranes and were not functionally disabled. Proteolysis was associated with a marked attenuation of the frequency of Ca2+ signals in pancreatic lobules. Consistent with these data, expression of DNAs encoding complementary R2 and R3 peptides mimicking fragmented receptors at particular sites, resulted in a significant decrease in the frequency of agonist-stimulated Ca2+ oscillations. Further, proteolysis of R2 resulted in a marked decrease in single-channel open probability. Taken together, proteolytic fragmentation modulates R2 and R3 activity in a region-specific manner, and this event may contribute to the altered Ca2+ signals in pancreatic acinar cells during acute pancreatitis.
Collapse
Affiliation(s)
- Liwei Wang
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
17
|
Bijnens J, Missiaen L, Bultynck G, Parys JB. A critical appraisal of the role of intracellular Ca 2+-signaling pathways in Kawasaki disease. Cell Calcium 2018; 71:95-103. [PMID: 29604968 DOI: 10.1016/j.ceca.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 12/31/2022]
Abstract
Kawasaki disease is a multi-systemic vasculitis that generally occurs in children and that can lead to coronary artery lesions. Recent studies showed that Kawasaki disease has an important genetic component. In this review, we discuss the single-nucleotide polymorphisms in the genes encoding proteins with a role in intracellular Ca2+ signaling: inositol 1,4,5-trisphosphate 3-kinase C, caspase-3, the store-operated Ca2+-entry channel ORAI1, the type-3 inositol 1,4,5-trisphosphate receptor, the Na+/Ca2+ exchanger 1, and phospholipase Cß4 and Cß1. An increase of the free cytosolic Ca2+ concentration is proposed to be a major factor in susceptibility to Kawasaki disease and disease outcome, but only for polymorphisms in the genes encoding the inositol 1,4,5-trisphosphate 3-kinase C and the Na+/Ca2+ exchanger 1, the free cytosolic Ca2+ concentration was actually measured and shown to be increased. Excessive cytosolic Ca2+ signaling can result in hyperactive calcineurin in T cells with an overstimulated nuclear factor of activated T cells pathway, in hypersecretion of interleukin-1ß and tumor necrosis factor-α by monocytes/macrophages, in increased urotensin-2 signaling, and in an overactivation of vascular endothelial cells.
Collapse
Affiliation(s)
- Jeroen Bijnens
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Ludwig Missiaen
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, B-3000 Leuven, Belgium.
| |
Collapse
|