1
|
Fuentes-Ugarte N, Pereira-Silva M, Cortes-Rubilar I, Vallejos-Baccelliere G, Guixé V, Castro-Fernandez V. How enzyme functions evolve: genetic, structural, and kinetic perspectives. Biophys Rev 2025; 17:467-478. [PMID: 40376426 PMCID: PMC12075042 DOI: 10.1007/s12551-025-01314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Understanding the emergence or loss of enzyme functions comprises several approaches, such as genetic, structural, and kinetic studies. Promiscuous enzyme activities have been proposed as starting points for the emergence of novel enzyme functions, for example, through genetic models such as neofunctionalization and subfunctionalization. In both cases, neutral evolution would fix gene redundancy, critical in relaxing functional constraints and allowing specific mutations to drive innovation. The evolution of enzyme activities has a structural basis, with genetic mutations modifying the active site architecture, conformational dynamics, or interaction networks, which leads to the creation, enhancement, or restriction of enzyme functions where epistatic interactions are crucial. These structural changes impact the described kinetic mechanisms like ground-state stabilization (affinity), transition-state stabilization (catalysis), or a combination of both. Case studies across diverse enzyme families illustrate these principles, emphasizing the interplay between genetic, structural, and kinetic approaches. Finally, we discuss the importance of understanding evolutionary mechanisms and their impact on protein engineering and drug design for biomedical and industrial applications. However, these studies highlight that further experimental evolutionary data collection is necessary to enable the training of advanced machine learning models for use in biotechnological applications.
Collapse
Affiliation(s)
- Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Martin Pereira-Silva
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Isaac Cortes-Rubilar
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gabriel Vallejos-Baccelliere
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Shen L, Peraglie C, Podlesainski D, Stracke C, Ojha RS, Caliebe F, Kaiser M, Forchhammer K, Hagemann M, Gutekunst K, Snoep JL, Bräsen C, Siebers B. Structure function analysis of ADP-dependent cyanobacterial phosphofructokinase reveals new phylogenetic grouping in the PFK-A family. J Biol Chem 2024; 300:107868. [PMID: 39393572 DOI: 10.1016/j.jbc.2024.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Depending on the light conditions, photosynthetic organisms switch between carbohydrate synthesis or breakdown, for which the reversibility of carbohydrate metabolism, including glycolysis, is essential. Kinetic regulation of phosphofructokinase (PFK), a key-control point in glycolysis, was studied in the cyanobacterium Synechocystis sp. PCC 6803. The two PFK iso-enzymes (PFK- A1, PFK-A2), were found to use ADP instead of ATP, and have similar kinetic characteristics, but differ in their allosteric regulation. PFK-A1 is inhibited by 3-phosphoglycerate, a product of the Calvin-Benson-Bassham cycle, while PFK-A2 is inhibited by ATP, which is provided by photosynthesis. This regulation enables cyanobacteria to switch PFK off in light, and on in darkness. ADP dependence has not been reported before for the PFK-A enzyme family and was thought to be restricted to the PFK-B ribokinase superfamily. Phosphate donor specificity within the PFK-A family could be related to specific binding motifs in ATP-, ADP-, and PPi-dependent PFK-As. Phylogenetic analysis revealed a distribution of ADP-PFK-As in cyanobacteria and in a few alphaproteobacteria, which was confirmed in enzymatic studies.
Collapse
Affiliation(s)
- Lu Shen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmen Peraglie
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - David Podlesainski
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christina Stracke
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ravi Shankar Ojha
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Frauke Caliebe
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Markus Kaiser
- Chemical Biology, Centre of Medical Biotechnology (ZMB), Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | | | - Kirstin Gutekunst
- Molekulare Pflanzenphysiologie, University of Kassel, Kassel, Germany
| | - Jacky L Snoep
- Biochemistry, University of Stellenbosch, Stellenbosch, South Africa; Molecular Cell Biology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Meger AT, Spence MA, Sandhu M, Matthews D, Chen J, Jackson CJ, Raman S. Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors. Cell Syst 2024; 15:374-387.e6. [PMID: 38537640 PMCID: PMC11299162 DOI: 10.1016/j.cels.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/08/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
How a protein's function influences the shape of its fitness landscape, smooth or rugged, is a fundamental question in evolutionary biochemistry. Smooth landscapes arise when incremental mutational steps lead to a progressive change in function, as commonly seen in enzymes and binding proteins. On the other hand, rugged landscapes are poorly understood because of the inherent unpredictability of how sequence changes affect function. Here, we experimentally characterize the entire sequence phylogeny, comprising 1,158 extant and ancestral sequences, of the DNA-binding domain (DBD) of the LacI/GalR transcriptional repressor family. Our analysis revealed an extremely rugged landscape with rapid switching of specificity, even between adjacent nodes. Further, the ruggedness arises due to the necessity of the repressor to simultaneously evolve specificity for asymmetric operators and disfavors potentially adverse regulatory crosstalk. Our study provides fundamental insight into evolutionary, molecular, and biophysical rules of genetic regulation through the lens of fitness landscapes.
Collapse
Affiliation(s)
- Anthony T Meger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mahakaran Sandhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Dana Matthews
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Herrera-Morandé A, Vallejos-Baccelliere G, Cea PA, Zamora RA, Cid D, Maturana P, González-Ordenes F, Castro-Fernández V, Guixé V. Kinetic characterization and phylogenetic analysis of human ADP-dependent glucokinase reveal new insights into its regulatory properties. Arch Biochem Biophys 2023; 741:109602. [PMID: 37084804 DOI: 10.1016/j.abb.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK´s are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.
Collapse
Affiliation(s)
- Alejandra Herrera-Morandé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Gabriel Vallejos-Baccelliere
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dixon Cid
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Felipe González-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Castro-Fernández
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Catalytic mechanism for Renilla-type luciferases. Nat Catal 2023. [DOI: 10.1038/s41929-022-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Jayaraman V, Toledo‐Patiño S, Noda‐García L, Laurino P. Mechanisms of protein evolution. Protein Sci 2022; 31:e4362. [PMID: 35762715 PMCID: PMC9214755 DOI: 10.1002/pro.4362] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/06/2022]
Abstract
How do proteins evolve? How do changes in sequence mediate changes in protein structure, and in turn in function? This question has multiple angles, ranging from biochemistry and biophysics to evolutionary biology. This review provides a brief integrated view of some key mechanistic aspects of protein evolution. First, we explain how protein evolution is primarily driven by randomly acquired genetic mutations and selection for function, and how these mutations can even give rise to completely new folds. Then, we also comment on how phenotypic protein variability, including promiscuity, transcriptional and translational errors, may also accelerate this process, possibly via "plasticity-first" mechanisms. Finally, we highlight open questions in the field of protein evolution, with respect to the emergence of more sophisticated protein systems such as protein complexes, pathways, and the emergence of pre-LUCA enzymes.
Collapse
Affiliation(s)
- Vijay Jayaraman
- Department of Molecular Cell BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Saacnicteh Toledo‐Patiño
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Lianet Noda‐García
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| |
Collapse
|
8
|
Hyland EM, Webb AE, Kennedy KF, Gerek Ince ZN, Loscher CE, O'Connell MJ. Adaptive Evolution in TRIF Leads to Discordance between Human and Mouse Innate Immune Signaling. Genome Biol Evol 2021; 13:6454097. [PMID: 34893845 PMCID: PMC8691055 DOI: 10.1093/gbe/evab268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
The TIR domain-containing adapter inducing IFN-β (TRIF) protein is an innate immune system protein that mediates the MyD88-independent toll-like receptor response pathway in mice and humans. Previously, we identified positive selection at seven distinct residues in mouse TRIF (mTRIF), as compared with human and other mammalian orthologs, thus predicting protein functional shift in mTRIF. We reconstructed TRIF for the most recent common ancestor of mouse and human, and mutated this at the seven sites to their extant mouse/human states. We overexpressed these TRIF mutants in immortalized human and mouse cell lines and monitored TRIF-dependent cytokine production and gene expression induction. We show that optimal TRIF function in human and mouse is dependent on the identity of the positively selected sites. These data provide us with molecular data relating observed differences in response between mouse and human MyD88-independent signaling in the innate immune system with protein functional change.
Collapse
Affiliation(s)
- Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Kathy F Kennedy
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Z Nevin Gerek Ince
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Christine E Loscher
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Zamora RA, Ramirez-Sarmiento CA, Castro-Fernández V, Villalobos P, Maturana P, Herrera-Morande A, Komives EA, Guixé V. Tuning of Conformational Dynamics Through Evolution-Based Design Modulates the Catalytic Adaptability of an Extremophilic Kinase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Cesar A. Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile. Avenida Vicuña Mackenna 4860, Macul, Santiago 6904411, Chile
| | - Víctor Castro-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Pablo Maturana
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Alejandra Herrera-Morande
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Elizabeth A. Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92092-0378, United States
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| |
Collapse
|
10
|
An Evolutionary Marker of the Ribokinase Superfamily Is Responsible for Zinc-Mediated Regulation of Human Pyridoxal Kinase. Catalysts 2020. [DOI: 10.3390/catal10050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ribokinase superfamily catalyzes the phosphorylation of a vast diversity of substrates, and its members are characterized by the conservation of a common structural fold along with highly conserved sequence motifs responsible for phosphoryl transfer (GXGD) and stabilization of the metal-nucleotide complex (NXXE). Recently, a third motif (HXE) exclusive from ADP-dependent enzymes was identified, with its glutamic acid participating in water-mediated interactions with the metal-nucleotide complex and in stabilization of the ternary complex during catalysis. In this work, we bioinformatically determine that the aspartic acid of another motif (DPV), exclusively found in hydroxyethyl thiazole (THZK), hydroxymethyl pyrimidine (HMPK) and pyridoxal kinases (PLK), is structurally equivalent to the acidic residue in the HXE motif. Moreover, this residue is highly conserved among all ribokinase superfamily members. To determine whether the functional role of the DPV motif is similar to the HXE motif, we employed molecular dynamics simulations using crystal structures of phosphoryl donor substrate-complexed THZK and PLK, showing that its aspartic acid participated in water-mediated or direct interactions with the divalent metal of the metal-nucleotide complex. Lastly, enzyme kinetic assays on human PLK, an enzyme that utilizes zinc, showed that site-directed mutagenesis of the aspartic acid from the DPV motif abolishes the inhibition of this enzyme by increasing free zinc concentrations. Altogether, our results highlight that the DPV and HXE motifs are evolutionary markers of the functional and structural divergence of the ribokinase superfamily and evidence the role of the DPV motif in the interaction with both free and nucleotide-complexed divalent metals in the binding site of these enzymes.
Collapse
|
11
|
Trudeau DL, Tawfik DS. Protein engineers turned evolutionists-the quest for the optimal starting point. Curr Opin Biotechnol 2019; 60:46-52. [PMID: 30611116 DOI: 10.1016/j.copbio.2018.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The advent of laboratory directed evolution yielded a fruitful crosstalk between the disciplines of molecular evolution and bio-engineering. Here, we outline recent developments in both disciplines with respect to how one can identify the best starting points for directed evolution, such that highly efficient and robust tailor-made enzymes can be obtained with minimal optimization. Directed evolution studies have highlighted essential features of engineer-able enzymes: highly stable, mutationally robust enzymes with the capacity to accept a broad range of substrates. Robust, evolvable enzymes can be inferred from the natural sequence record. Broad substrate spectrum relates to conformational plasticity and can also be predicted by phylogenetic analyses and/or by computational design. Overall, an increasingly powerful toolkit is becoming available for identifying optimal starting points including network analyses of enzyme superfamilies and other bioinformatics methods.
Collapse
Affiliation(s)
- Devin L Trudeau
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| |
Collapse
|
12
|
Gonzalez-Ordenes F, Cea PA, Fuentes-Ugarte N, Muñoz SM, Zamora RA, Leonardo D, Garratt RC, Castro-Fernandez V, Guixé V. ADP-Dependent Kinases From the Archaeal Order Methanosarcinales Adapt to Salt by a Non-canonical Evolutionarily Conserved Strategy. Front Microbiol 2018; 9:1305. [PMID: 29997580 PMCID: PMC6028617 DOI: 10.3389/fmicb.2018.01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
Halophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the Euryarchaeota, for example, only the Halobacteria and the order Methanosarcinales include readily cultivable halophilic species. Furthermore, only the former have been extensively studied in terms of their component proteins. Here, in order to redress this imbalance, we investigate the halophilic adaptation of glycolytic enzymes from the ADP-dependent phosphofructokinase/glucokinase family (ADP-PFK/GK) derived from organisms of the order Methanosarcinales. Structural analysis of proteins from non-halophilic and halophilic Methanosarcinales shows an almost identical composition and distribution of amino acids on both the surface and within the core. However, these differ from those observed in Halobacteria or Eukarya. Proteins from Methanosarcinales display a remarkable increase in surface lysine content and have no reduction to the hydrophobic core, contrary to the features ubiquitously observed in Halobacteria and which are thought to be the main features responsible for their halophilic properties. Biochemical characterization of recombinant ADP-PFK/GK from M. evestigatum (halophilic) and M. mazei (non-halophilic) shows the activity of both these extant enzymes to be only moderately inhibited by salt. Nonetheless, its activity over time is notoriously stabilized by salt. Furthermore, glycine betaine has a protective effect against KCl inhibition and enhances the thermal stability of both enzymes. The resurrection of the last common ancestor of ADP-PFK/GK from Methanosarcinales shows that the ancestral enzyme displays an extremely high salt tolerance and thermal stability. Structure determination of the ancestral protein reveals unique traits such as an increase in the Lys and Glu content at the protein surface and yet no reduction to the volume of the hydrophobic core. Our results suggest that the halophilic character is an ancient trait in the evolution of this protein family and that proteins from Methanosarcinales have adapted to highly saline environments by a non-canonical strategy, different from that currently proposed for Halobacteria. These results open up new avenues for the search and development of novel salt tolerant biocatalysts.
Collapse
Affiliation(s)
- Felipe Gonzalez-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián M Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Leonardo
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Tokarz P, Wiśniewska M, Kamiński MM, Dubin G, Grudnik P. Crystal structure of ADP-dependent glucokinase from Methanocaldococcus jannaschii in complex with 5-iodotubercidin reveals phosphoryl transfer mechanism. Protein Sci 2018; 27:790-797. [PMID: 29352744 DOI: 10.1002/pro.3377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/11/2022]
Abstract
ADP-dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP-dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5-iodotubercidin, d-glucose, inorganic phosphate, and a magnesium ion. Detailed analysis of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a β-phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5-iodotubercidin inhibits human ADPGK-dependent T cell activation-induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK-specific inhibitors.
Collapse
Affiliation(s)
- Piotr Tokarz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Magdalena Wiśniewska
- Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Przemysław Grudnik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| |
Collapse
|