1
|
Winzor DJ, Dinu V, Scott DJ, Harding SE. Quantifying the concentration dependence of sedimentation coefficients for globular macromolecules: a continuing age-old problem. Biophys Rev 2021; 13:273-288. [PMID: 33936319 PMCID: PMC8046895 DOI: 10.1007/s12551-021-00793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
This retrospective investigation has established that the early theoretical attempts to directly incorporate the consequences of radial dilution into expressions for variation of the sedimentation coefficient as a function of the loading concentration in sedimentation velocity experiments require concentration distributions exhibiting far greater precision than that achieved by the optical systems of past and current analytical ultracentrifuges. In terms of current methods of sedimentation coefficient measurement, until such improvement is made, the simplest procedure for quantifying linear s-c dependence (or linear concentration dependence of 1/s) for dilute systems therefore entails consideration of the sedimentation coefficient obtained by standard c(s), g*(s) or G(s) analysis) as an average parameter (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯) that pertains to the corresponding mean plateau concentration (following radial dilution) (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{c} $$\end{document}c¯) over the range of sedimentation velocity distributions used for the determination of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯. The relation of this with current descriptions of the concentration dependence of the sedimentation and translational diffusion coefficients is considered, together with a suggestion for the necessary improvement in the optical system.
Collapse
Affiliation(s)
- Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,University of Oslo, Kulturhistorisk museum, Frederiks gate 2, Oslo, 0164 Norway
| |
Collapse
|
2
|
Characterization of Streptococcus pneumoniae PriA helicase and its ATPase and unwinding activities in DNA replication restart. Biochem J 2021; 477:3911-3922. [PMID: 32985663 DOI: 10.1042/bcj20200269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022]
Abstract
DNA replication forks often encounter template DNA lesions that can stall their progression. The PriA-dependent pathway is the major replication restart mechanism in Gram-positive bacteria, and it requires several primosome proteins. Among them, PriA protein - a 3' to 5' superfamily-2 DNA helicase - is the key factor in recognizing DNA lesions and it also recruits other proteins. Here, we investigated the ATPase and helicase activities of Streptococcus pneumoniae PriA (SpPriA) through biochemical and kinetic analyses. By comparing various DNA substrates, we observed that SpPriA is unable to unwind duplex DNA with high GC content. We constructed a deletion mutant protein (SpPriAdeloop) from which the loop area of the DNA-binding domain of PriA had been removed. Functional assays on SpPriAdeloop revealed that the loop area is important in endowing DNA-binding properties on the helicase. We also show that the presence of DnaD loader protein is important for enhancing SpPriA ATPase and DNA unwinding activities.
Collapse
|
3
|
Romero H, Torres R, Hernández-Tamayo R, Carrasco B, Ayora S, Graumann PL, Alonso JC. Bacillus subtilis RarA acts at the interplay between replication and repair-by-recombination. DNA Repair (Amst) 2019; 78:27-36. [PMID: 30954900 DOI: 10.1016/j.dnarep.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Bacterial RarA is thought to play crucial roles in the cellular response to blocked replication forks. We show that lack of Bacillus subtilis RarA renders cells very sensitive to H2O2, but not to methyl methane sulfonate or 4-nitroquinoline-1-oxide. RarA is epistatic to RecA in response to DNA damage. Inactivation of rarA partially suppressed the DNA repair defect of mutants lacking translesion synthesis polymerases. RarA may contribute to error-prone DNA repair as judged by the reduced frequency of rifampicin-resistant mutants in ΔrarA and in ΔpolY1 ΔrarA cells. The absence of RarA strongly reduced the viability of dnaD23ts and dnaB37ts cells upon partial thermal inactivation, suggesting that ΔrarA cells are deficient in replication fork assembly. A ΔrarA mutation also partially reduced the viability of dnaC30ts and dnaX51ts cells and slightly improved the viability of dnaG40ts cells at semi-permissive temperature. These results suggest that RarA links re-initiation of DNA replication with repair-by-recombination by controlling the access of the replication machinery to a collapsed replication fork.
Collapse
Affiliation(s)
- Hector Romero
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain; SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain
| | - Peter L Graumann
- SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043, Marburg, Germany; Fachbereich Chemie, Hans-Meerwein-Straße 4, 35032, Marburg, Germany.
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St., 28049, Madrid, Spain.
| |
Collapse
|
4
|
Carrasco B, Seco EM, López-Sanz M, Alonso JC, Ayora S. Bacillus subtilis RarA modulates replication restart. Nucleic Acids Res 2018; 46:7206-7220. [PMID: 29947798 PMCID: PMC6101539 DOI: 10.1093/nar/gky541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/05/2018] [Indexed: 02/01/2023] Open
Abstract
The ubiquitous RarA/Mgs1/WRNIP protein plays a crucial, but poorly understood role in genome maintenance. We show that Bacillus subtilis RarA, in the apo form, preferentially binds single-stranded (ss) over double-stranded (ds) DNA. SsbA bound to ssDNA loads RarA, and for such recruitment the amphipathic C-terminal domain of SsbA is required. RarA is a DNA-dependent ATPase strongly stimulated by ssDNA–dsDNA junctions and SsbA, or by dsDNA ends. RarA, which may interact with PriA, does not stimulate PriA DNA unwinding. In a reconstituted PriA-dependent DNA replication system, RarA inhibited initiation, but not chain elongation. The RarA effect was not observed in the absence of SsbA, or when the host-encoded preprimosome and the DNA helicase are replaced by proteins from the SPP1 phage with similar function. We propose that RarA assembles at blocked forks to maintain genome integrity. Through its interaction with SsbA and with a preprimosomal component, RarA might impede the assembly of the replicative helicase, to prevent that recombination intermediates contribute to pathological DNA replication restart.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Elena M Seco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - María López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
5
|
Windgassen TA, Wessel SR, Bhattacharyya B, Keck JL. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res 2018; 46:504-519. [PMID: 29202195 PMCID: PMC5778457 DOI: 10.1093/nar/gkx1203] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multi-protein DNA replication complexes called replisomes perform the essential process of copying cellular genetic information prior to cell division. Under ideal conditions, replisomes dissociate only after the entire genome has been duplicated. However, DNA replication rarely occurs without interruptions that can dislodge replisomes from DNA. Such events produce incompletely replicated chromosomes that, if left unrepaired, prevent the segregation of full genomes to daughter cells. To mitigate this threat, cells have evolved 'DNA replication restart' pathways that have been best defined in bacteria. Replication restart requires recognition and remodeling of abandoned replication forks by DNA replication restart proteins followed by reloading of the replicative DNA helicase, which subsequently directs assembly of the remaining replisome subunits. This review summarizes our current understanding of the mechanisms underlying replication restart and the proteins that drive the process in Escherichia coli (PriA, PriB, PriC and DnaT).
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sarah R Wessel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Biochemistry, Vanderbilt School of Medicine, Nashville, TN 37205, USA
| | - Basudeb Bhattacharyya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
- Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
6
|
Patel TR, Winzor DJ, Scott DJ. Allowance for radial dilution in evaluating the concentration dependence of sedimentation coefficients for globular proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:291-295. [PMID: 28980105 DOI: 10.1007/s00249-017-1259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 11/25/2022]
Abstract
The accuracy with which the concentration dependence of the sedimentation coefficient, s = s 0(1 - kc), can be quantified for globular proteins by commonly used procedures has been examined by subjecting simulated sedimentation velocity distributions for ovalbumin to c(s)‒s analysis. Because this procedure, as well as its g(s)‒s counterpart, is based on assumed constancy of s over the time course of sedimentation coefficient measurement in a given experiment, the best definition of the concentration coefficient k is obtained by associating the measured s with the mean of plateau concentrations for the initial and final distributions used for its determination. The return of a slightly underestimated k (by about 3%) is traced to minor mislocation of the air‒liquid meniscus position as the result of assuming time independence of s in a given experiment. Although more accurate quantification should result from later SEDFIT and SEDANAL programs incorporating the simultaneous evaluation of s 0 and k, the procedures based on assumed constancy of s suffice for determining the limiting sedimentation coefficient s 0-the objective of most s‒c dependence studies.
Collapse
Affiliation(s)
- Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada. .,Discovery Lab, Medical Sciences Building, University of Alberta, Edmonton, AB, T6G 2H7, Canada. .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Scott
- National Center for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE2 5RD, UK. .,ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Innovation Campus, Oxfordshire, OX11 OFA, UK. .,Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Innovation Campus, Oxfordshire, OX11 OFA, UK.
| |
Collapse
|