1
|
Ahmad S, Imtiaz MA, Mishra A, Wang R, Herrera-Rivero M, Bis JC, Fornage M, Roshchupkin G, Hofer E, Logue M, Longstreth WT, Xia R, Bouteloup V, Mosley T, Launer LJ, Khalil M, Kuhle J, Rissman RA, Chene G, Dufouil C, Djoussé L, Lyons MJ, Mukamal KJ, Kremen WS, Franz CE, Schmidt R, Debette S, Breteler MMB, Berger K, Yang Q, Seshadri S, Aziz NA, Ghanbari M, Ikram MA. Genome-wide association study meta-analysis of neurofilament light (NfL) levels in blood reveals novel loci related to neurodegeneration. Commun Biol 2024; 7:1103. [PMID: 39251807 PMCID: PMC11385583 DOI: 10.1038/s42003-024-06804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Neurofilament light chain (NfL) levels in circulation have been established as a sensitive biomarker of neuro-axonal damage across a range of neurodegenerative disorders. Elucidation of the genetic architecture of blood NfL levels could provide new insights into molecular mechanisms underlying neurodegenerative disorders. In this meta-analysis of genome-wide association studies (GWAS) of blood NfL levels from eleven cohorts of European ancestry, we identify two genome-wide significant loci at 16p12 (UMOD) and 17q24 (SLC39A11). We observe association of three loci at 1q43 (FMN2), 12q14, and 12q21 with blood NfL levels in the meta-analysis of African-American ancestry. In the trans-ethnic meta-analysis, we identify three additional genome-wide significant loci at 1p32 (FGGY), 6q14 (TBX18), and 4q21. In the post-GWAS analyses, we observe the association of higher NfL polygenic risk score with increased plasma levels of total-tau, Aβ-40, Aβ-42, and higher incidence of Alzheimer's disease in the Rotterdam Study. Furthermore, Mendelian randomization analysis results suggest that a lower kidney function could cause higher blood NfL levels. This study uncovers multiple genetic loci of blood NfL levels, highlighting the genes related to molecular mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
- Oxford-GSK Institute of Computational and Molecular Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford, OX3 7BN, UK
| | - Mohammad Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Ruiqi Wang
- Boston University, Boston, MA, 02215, USA
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Ave #1360, Seattle, WA, 98101, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street Houston, Houston, 77030, TX, USA
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, Fifth Floor, Graz, 8036, Austria
| | - Mark Logue
- National Center for PTSD, Behavioral Sciences Division at VA Boston Healthcare System, Boston, 150 South Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, 72 East Concord Street E200, Boston, MA, 02118, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, 3980 15th Ave NE Seattle, Seattle, WA, 98195, USA
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street Houston, Houston, 77030, TX, USA
| | - Vincent Bouteloup
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Thomas Mosley
- MIND Center, University of Mississippi Medical Center, Jackson, 2500 North State Street, Jackson, MS, 39216, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, NIA Intramural Research Program, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Jens Kuhle
- Research Center for Clinical Neuroimmunology and Neuroscience University Hospital, Spitalstrasse 2, CH-4031, Basel, Switzerland
| | - Robert A Rissman
- Department of Physiology and Neuroscience, Alzheimer's Therapeutic Research Institute, Keck School of Medicine of the University of Southern California, California, USA
| | - Genevieve Chene
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Luc Djoussé
- Brigham and Women's Hospital, Harvard Medical School, Boston, 75 FRANCIS STREET, BOSTON MA 02115, MA, Boston, USA
| | - Michael J Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, 64 Cummington Mall # 149, Boston, MA, 02215, USA
| | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 330 Brookline Avenue Boston, MA, 02215, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Institut für Epidemiologie und Sozialmedizin Albert-Schweitzer-Campus 1, Gebäude D3 48149, Münster, Germany
| | - Qiong Yang
- Boston University, Boston, MA, 02215, USA
| | - Sudha Seshadri
- Boston University, Boston, MA, 02215, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Sanyasi C, Balakrishnan SS, Chinnasamy T, Venugopalan N, Kandavelu P, Batra-Safferling R, Muthuvel SK. Insights on the dynamic behavior of protein disulfide isomerase in the solution environment through the SAXS technique. In Silico Pharmacol 2024; 12:23. [PMID: 38584776 PMCID: PMC10997565 DOI: 10.1007/s40203-024-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 04/09/2024] Open
Abstract
The dynamic behavior of Protein Disulfide Isomerase (PDI) in an aqueous solution environment under physiologically active pH has been experimentally verified in this study using Small Angle X-ray Scattering (SAXS) technique. The structural mechanism of dimerization for full-length PDI molecules and co-complex with two renowned substrates has been comprehensively discussed. The structure models obtained from the SAXS data of PDI purified from bovine liver display behavior duality between unaccompanied-enzyme and after engaged with substrates. The analysis of SAXS data revealed that PDI exists as a homo-dimer in the solution environment, and substrate induction provoked its segregation into monomer to enable the enzyme to interact systematically with incoming clients. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00198-0.
Collapse
Affiliation(s)
- Chandrasekar Sanyasi
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Susmida Seni Balakrishnan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Thirunavukkarasu Chinnasamy
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| | - Nagarajan Venugopalan
- GMCA Structural Biology Facility, X-Ray Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Palani Kandavelu
- SER-CAT and The Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30601 USA
| | - Renu Batra-Safferling
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Suresh Kumar Muthuvel
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, 605014 India
| |
Collapse
|
3
|
Tang Y, Ni A, Li S, Sun L, Li G. Expression, localization, and function of P4HB in the spermatogenesis of Chinese mitten crab ( Eriocheir sinensis). PeerJ 2023; 11:e15547. [PMID: 37334119 PMCID: PMC10276555 DOI: 10.7717/peerj.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background The sperm of Chinese mitten crab (Eriocheir sinensis) have special noncondensed nuclei. The formation and stability of the special nuclei are closely related to the correct folding of proteins during spermatogenesis. P4HB plays a key role in protein folding, but its expression and role in the spermatogenesis of E. sinensis are unclear. Objective To investigate the expression and distribution characteristics of P4HB in the spermatogenesis of E. sinensis as well as its possible role. Methods The testis tissues of adult and juvenile E. sinensis were used as materials. We utilized a variety of techniques, including homology modeling, phylogenetic analysis, RT-qPCR, western blotting, and immunofluorescence staining to predict the protein structure and sequence homology of P4HB, analyze its expression in the testis tissues, and localize and semi-quantitatively assess its expression in different male germ cells. Results The sequence of P4HB protein in E. sinensis shared a high similarity of 58.09% with the human protein disulfide isomerase, and the phylogenetic tree analysis indicated that the protein sequence was highly conserved among crustaceans, arthropods, and other animals species. P4HB was found to be expressed in both juvenile and adult E. sinensis testis tissues, with different localization patterns observed all over the developmental stages of male germ cells. It was higher expressed in the spermatogonia, spermatocytes, and stage I spermatids, followed by the mature sperm than in the stage II and III spermatids. The subcellular localization analysis revealed that P4HB was predominantly expressed in the cytoplasm, cell membrane, and extracellular matrix in the spermatogonia, spermatocytes, stage I and stage II spermatids, with some present in specific regions of the nuclei in the spermatogonia. In contrast, P4HB was mainly localized in the nuclei of stage III spermatids and sperm, with little expression observed in the cytoplasm. Conclusion P4HB was expressed in the testis tissues of both adult and juvenile E. sinensis, but the expression and localization were different in male germ cells at various developmental stages. The observed differences in the expression and localization of P4HB may be an essential factor in maintaining the cell morphology and structure of diverse male germ cells in E. sinensis. Additionally, P4HB expressed in the nuclei of spermatogonia, late spermatids, and sperm may play an indispensable role in maintaining the stability of the noncondensed spermatozoal nuclei in E. sinensis.
Collapse
|
4
|
The Role of Protein S-Nitrosylation in Protein Misfolding-Associated Diseases. Life (Basel) 2021; 11:life11070705. [PMID: 34357077 PMCID: PMC8304259 DOI: 10.3390/life11070705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Abnormal and excessive nitrosative stress contributes to neurodegenerative disease associated with the production of pathological levels of misfolded proteins. The accumulated findings strongly suggest that excessive NO production can induce and deepen these pathological processes, particularly by the S-nitrosylation of target proteins. Therefore, the relationship between S-nitrosylated proteins and the accumulation of misfolded proteins was reviewed. We particularly focused on the S-nitrosylation of E3-ubiquitin-protein ligase, parkin, and endoplasmic reticulum chaperone, PDI, which contribute to the accumulation of misfolded proteins. In addition to the target proteins being S-nitrosylated, NOS, which produces NO, and GSNOR, which inhibits S-nitrosylation, were also suggested as potential therapeutic targets for protein misfolding-associated diseases.
Collapse
|
5
|
Huang X, Chen S, Li W, Tang L, Zhang Y, Yang N, Zou Y, Zhai X, Xiao N, Liu W, Li P, Xu C. ROS regulated reversible protein phase separation synchronizes plant flowering. Nat Chem Biol 2021; 17:549-557. [PMID: 33633378 DOI: 10.1038/s41589-021-00739-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shudong Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiping Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingli Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqin Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Ning Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yupan Zou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiawan Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Cao Xu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Wang K, Liu JQ, Zhong T, Liu XL, Zeng Y, Qiao X, Xie T, Chen Y, Gao YY, Tang B, Li J, Zhou J, Pang DW, Chen J, Chen C, Liang Y. Phase Separation and Cytotoxicity of Tau are Modulated by Protein Disulfide Isomerase and S-nitrosylation of this Molecular Chaperone. J Mol Biol 2020; 432:2141-2163. [PMID: 32087196 DOI: 10.1016/j.jmb.2020.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Cells have evolved molecular chaperones that modulate phase separation and misfolding of amyloidogenic proteins to prevent neurodegenerative diseases. Protein disulfide isomerase (PDI), mainly located at the endoplasmic reticulum and also present in the cytosol, acts as both an enzyme and a molecular chaperone. PDI is observed to be S-nitrosylated in the brain of Alzheimer's disease patients, but the mechanism has remained elusive. We herein report that both wild-type PDI and its quadruple cysteine mutant only having chaperone activity, significantly inhibit pathological phosphorylation and abnormal aggregation of Tau in cells, and significantly decrease the mitochondrial damage and Tau cytotoxicity resulting from Tau aberrant aggregation, highlighting the chaperone property of PDI. More importantly, we show that wild-type PDI is selectively recruited by liquid droplets of Tau, which significantly inhibits phase separation and stress granule formation of Tau, whereas S-nitrosylation of PDI abrogates the recruitment and inhibition. These findings demonstrate how phase separation of Tau is physiologically regulated by PDI and how S-nitrosylation of PDI, a perturbation in this regulation, leads to disease.
Collapse
Affiliation(s)
- Kan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jia-Qi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zhong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiao-Ling Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzhe Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Ying Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jia Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Ershov PV, Mezentsev YV, Kopylov AT, Yablokov EO, Svirid AV, Lushchyk AY, Kaluzhskiy LA, Gilep AA, Usanov SA, Medvedev AE, Ivanov AS. Affinity Isolation and Mass Spectrometry Identification of Prostacyclin Synthase (PTGIS) Subinteractome. BIOLOGY 2019; 8:E49. [PMID: 31226805 PMCID: PMC6628129 DOI: 10.3390/biology8020049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 01/04/2023]
Abstract
Prostacyclin synthase (PTGIS; EC 5.3.99.4) catalyzes isomerization of prostaglandin H2 to prostacyclin, a potent vasodilator and inhibitor of platelet aggregation. At present, limited data exist on functional coupling and possible ways of regulating PTGIS due to insufficient information about protein-protein interactions in which this crucial enzyme is involved. The aim of this study is to isolate protein partners for PTGIS from rat tissue lysates. Using CNBr-activated Sepharose 4B with covalently immobilized PTGIS as an affinity sorbent, we confidently identified 58 unique proteins by mass spectrometry (LC-MS/MS). The participation of these proteins in lysate complex formation was characterized by SEC lysate profiling. Several potential members of the PTGIS subinteractome have been validated by surface plasmon resonance (SPR) analysis. SPR revealed that PTGIS interacted with full-length cytochrome P450 2J2 and glutathione S-transferase (GST). In addition, PTGIS was shown to bind synthetic peptides corresponding to sequences of for GSTA1, GSTM1, aldo-keto reductase (AKR1A1), glutaredoxin 3 (GLRX3) and histidine triad nucleotide binding protein 2 (HINT2). Prostacyclin synthase could potentially be involved in functional interactions with identified novel protein partners participating in iron and heme metabolism, oxidative stress, xenobiotic and drugs metabolism, glutathione and prostaglandin metabolism. The possible biological role of the recognized interaction is discussed in the context of PTGIS functioning.
Collapse
Affiliation(s)
- Pavel V Ershov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Yuri V Mezentsev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Arthur T Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Evgeniy O Yablokov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Andrey V Svirid
- Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 5, bld. 2 V.F. Kuprevich str., 220141 Minsk, Belarus.
| | - Aliaksandr Ya Lushchyk
- Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 5, bld. 2 V.F. Kuprevich str., 220141 Minsk, Belarus.
| | - Leonid A Kaluzhskiy
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Andrei A Gilep
- Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 5, bld. 2 V.F. Kuprevich str., 220141 Minsk, Belarus.
| | - Sergey A Usanov
- Laboratory of Molecular Diagnostics and Biotechnology, Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 5, bld. 2 V.F. Kuprevich str., 220141 Minsk, Belarus.
| | - Alexey E Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| | - Alexis S Ivanov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya str., 119121 Moscow, Russia.
| |
Collapse
|