1
|
Bleem A, Kato R, Kellermyer ZA, Katahira R, Miyamoto M, Niinuma K, Kamimura N, Masai E, Beckham GT. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6. Cell Rep 2023; 42:112847. [PMID: 37515767 DOI: 10.1016/j.celrep.2023.112847] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/21/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Bioconversion of lignin-related aromatic compounds relies on robust catabolic pathways in microbes. Sphingobium sp. SYK-6 (SYK-6) is a well-characterized aromatic catabolic organism that has served as a model for microbial lignin conversion, and its utility as a biocatalyst could potentially be further improved by genome-wide metabolic analyses. To this end, we generate a randomly barcoded transposon insertion mutant (RB-TnSeq) library to study gene function in SYK-6. The library is enriched under dozens of enrichment conditions to quantify gene fitness. Several known aromatic catabolic pathways are confirmed, and RB-TnSeq affords additional detail on the genome-wide effects of each enrichment condition. Selected genes are further examined in SYK-6 or Pseudomonas putida KT2440, leading to the identification of new gene functions. The findings from this study further elucidate the metabolism of SYK-6, while also providing targets for future metabolic engineering in this organism or other hosts for the biological valorization of lignin.
Collapse
Affiliation(s)
- Alissa Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Zoe A Kellermyer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Masahiro Miyamoto
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Koh Niinuma
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
2
|
Rios AC, Bera PP, Moreno JA, Cooper G. Pyruvate Aldol Condensation Product: A Metabolite That Escaped Synthetic Preparation for Over a Century. ACS OMEGA 2020; 5:15063-15068. [PMID: 32637778 PMCID: PMC7330906 DOI: 10.1021/acsomega.0c00877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The homoaldol condensation product of pyruvate, 2-methyl-4-oxopent-2-enedioic acid (OMPD), has been recently implicated as a catabolic intermediate in the bacterial degradation of lignin and previously identified from other biological sources in reports ranging over 60 years. Yet, while a preparation of the pyruvate homoaldol product precursor, 4-hydroxy-4-methyl-2-oxoglutaric acid (HMOG/Parapyruvate), was first reported in 1901, there has not been a complete published synthesis of OMPD. Analyses of reaction mixtures have helped identify zymonic acid, the lactone of HMOG, as the direct precursor to OMPD. The reaction appears to proceed through an acid- or base-mediated ring opening that does not involve formal lactone hydrolysis. In addition to a preparative protocol, we provide a proposed mechanism for the formation of methylsuccinic acid that arises from the nonoxidative decarboxylation of OMPD. Finally, we calculated the relative stability of the isomers of OMPD and found Z-OMPD to be the lowest in energy. These computations also support our observations that Z-OMPD is the most abundant isomer across a range of pH values.
Collapse
Affiliation(s)
- Andro C. Rios
- Exobiology
Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N-239 Mail Stop 239-4, Moffett Field, California 94035, United States
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
- Center
for the Emergence of Life, NASA Ames Research
Center, Moffett Field, California 94035, United States
| | - Partha P. Bera
- Astrophysics
Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett
Field, California 94035, United States
- Bay
Area Environmental Research Institute, Moffett Field, California 94035, United States
| | - Jennifer A. Moreno
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
- Center
for the Emergence of Life, NASA Ames Research
Center, Moffett Field, California 94035, United States
| | - George Cooper
- Exobiology
Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N-239 Mail Stop 239-4, Moffett Field, California 94035, United States
- Center
for the Emergence of Life, NASA Ames Research
Center, Moffett Field, California 94035, United States
| |
Collapse
|
3
|
Wang J, Tang X, Zhang Y, Li Y, Zhu L, Zhang Q, Wang W. How to complete the tautomerization and substrate-assisted activation prior to C–C bond fission by meta-cleavage product hydrolase LigY? Catal Sci Technol 2020. [DOI: 10.1039/d0cy01102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two feasible binding modes could complete the C–C bond fission of the substrate. One is the bidentate mode and five-coordination, and the other is the monodentate mode and five-coordination.
Collapse
Affiliation(s)
- Junjie Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yixin Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Yanwei Li
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Ledong Zhu
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| |
Collapse
|
4
|
Kuatsjah E, Chan ACK, Hurst TE, Snieckus V, Murphy MEP, Eltis LD. Metal- and Serine-Dependent Meta-Cleavage Product Hydrolases Utilize Similar Nucleophile-Activation Strategies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Timothy E. Hurst
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Victor Snieckus
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
5
|
DdvK, a Novel Major Facilitator Superfamily Transporter Essential for 5,5'-Dehydrodivanillate Uptake by Sphingobium sp. Strain SYK-6. Appl Environ Microbiol 2018; 84:AEM.01314-18. [PMID: 30120118 DOI: 10.1128/aem.01314-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022] Open
Abstract
The microbial conversion of lignin-derived aromatics is a promising strategy for the industrial utilization of this large biomass resource. However, efficient application requires an elucidation of the relevant transport and catabolic pathways. In Sphingobium sp. strain SYK-6, most of the enzyme genes involved in 5,5'-dehydrodivanillate (DDVA) catabolism have been characterized, but the transporter has not yet been identified. Here, we identified SLG_07710 (ddvK) and SLG_07780 (ddvR), genes encoding a putative major facilitator superfamily (MFS) transporter and MarR-type transcriptional regulator, respectively. A ddvK mutant of SYK-6 completely lost the capacity to grow on and convert DDVA. DdvR repressed the expression of the DDVA O-demethylase oxygenase component gene (ligXa), while DDVA acted as the gene inducer. A DDVA uptake assay was developed by employing this DdvR-controlled ligXa transcriptional regulatory system. A Sphingobium japonicum UT26S transformant expressing ddvK acquired DDVA uptake capacity, indicating that ddvK encodes the DDVA transporter. DdvK, probably requiring the proton motive force, was suggested to be a novel MFS transporter on the basis of the amino acid sequence similarity. Subsequently, we evaluated the effects of ddvK overexpression on the production of the DDVA metabolite 2-pyrone-4,6-dicarboxylate (PDC), a building block of functional polymers. A SYK-6 mutant of the PDC hydrolase gene (ligI) cultured in DDVA accumulated PDC via 5-carboxyvanillate and grew by utilizing 4-carboxy-2-hydroxypenta-2,4-dienoate. The introduction of a ddvK-expression plasmid into a ligI mutant increased the growth rate in DDVA and the amounts of DDVA converted and PDC produced after 48 h by 1.35- and 1.34-fold, respectively. These results indicate that enhanced transporter gene expression can improve metabolite production from lignin derivatives.IMPORTANCE The bioengineering of bacteria to selectively transport and metabolize natural substrates into specific metabolites is a valuable strategy for industrial-scale chemical production. The uptake of many substrates into cells requires specific transport systems, and so the identification and characterization of transporter genes are essential for industrial applications. A number of bacterial major facilitator superfamily transporters of aromatic acids have been identified and characterized, but many transporters of lignin-derived aromatic acids remain unidentified. The efficient conversion of lignin, an abundant but unutilized aromatic biomass resource, to value-added metabolites using microbial catabolism requires the characterization of transporters for lignin-derived aromatics. In this study, we identified the transporter gene responsible for the uptake of 5,5'-dehydrodivanillate, a lignin-derived biphenyl compound, in Sphingobium sp. strain SYK-6. In addition to characterizing its function, we applied this transporter gene to the production of a value-added metabolite from 5,5'-dehydrodivanillate.
Collapse
|
6
|
Hogancamp TN, Mabanglo MF, Raushel FM. Structure and Reaction Mechanism of the LigJ Hydratase: An Enzyme Critical for the Bacterial Degradation of Lignin in the Protocatechuate 4,5-Cleavage Pathway. Biochemistry 2018; 57:5841-5850. [PMID: 30207699 DOI: 10.1021/acs.biochem.8b00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
LigJ from the soil bacterium Sphingobium sp. SYK-6 catalyzes the reversible hydration of (3 Z)-2-keto-4-carboxy-3-hexenedioate (KCH) to 4-carboxy-4-hydroxy-2-oxoadipate (CHA) in the degradation of lignin in the protocatechuate 4,5-cleavage pathway. LigJ is a member of the amidohydrolase superfamily and an enzyme in cog2159. The three-dimensional crystal structure of wild-type LigJ was determined in the presence [Protein Data Bank (PDB) entry 6DXQ ] and absence of the product CHA (PDB entry 6DWV ). The protein folds as a distorted (β/α)8-barrel, and a single zinc ion is bound in the active site at the C-terminal end of the central β-barrel. The product CHA is ligated to the zinc ion in the active site via the displacement of a single water molecule from the coordination shell of the metal center in LigJ. The product-bound structure reveals that the enzyme catalyzes the hydration of KCH with the formation of a chiral center at C4 with S stereochemistry. The E284Q mutant was unable to catalyze the hydration of KCH to CHA, and the structure of this mutant was determined in the presence of the substrate KCH (PDB entry 6DXS ). On the basis of the structure of LigJ in the presence of KCH and CHA, it is proposed that the side chain carboxylate of Glu-284 functions as a general base in the abstraction of a proton from a bound water molecule for nucleophilic attack at C4 of the substrate. The reaction is facilitated by the delocalization of the negative charge to the metal center via the carbonyl group at C2 of the substrate. C3 of the substrate is subsequently protonated by Glu-284 functioning as a general acid. The overall reaction occurs by the syn addition of water to the double bond between C4 and C3 of the substrate KCH. The kinetic constants for the hydration of KCH to CHA by LigJ at pH 8.0 are 25 s-1 ( kcat) and 2.6 × 106 M-1 s-1 ( kcat/ Km).
Collapse
Affiliation(s)
- Tessily N Hogancamp
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Mark F Mabanglo
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
7
|
Nerdinger S, Kuatsjah E, Hurst TE, Schlapp-Hackl I, Kahlenberg V, Wurst K, Eltis LD, Snieckus V. Bacterial Catabolism of Biphenyls: Synthesis and Evaluation of Analogues. Chembiochem 2018; 19:1771-1778. [PMID: 29905982 DOI: 10.1002/cbic.201800231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 12/31/2022]
Abstract
A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.
Collapse
Affiliation(s)
- Sven Nerdinger
- Global Commercial Operations, Sandoz GmbH, Biochemiestrasse 10, 6250, Kundl, Austria
| | - Eugene Kuatsjah
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy E Hurst
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| | - Inge Schlapp-Hackl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80-82, 6020, Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Lindsay D Eltis
- Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Chernoff Hall, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
8
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|